Micromechanism of plastic deformation enhancement in ultrafine-grained Al-Cu-Zr alloy after annealing and additional deformation
Gutkin M.Yu. 1,2,3, Orlova T.S. 4, Skiba N.V. 4
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2 ITMO University, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
4Ioffe Institute, St. Petersburg, Russia
Email: m.y.gutkin@gmail.com, orlova.t@mail.ioffe.ru, nikolay.skiba@gmail.com

PDF
A theoretical model which describes a micromechanism of plasticity enhancement in an ultrafine-grained Al-Cu-Zr alloy after annealing and additional deformation is suggested. Within the framework of the model, it was shown that nanoprecipitates of the secondary phase Al2Cu in the grain boundaries become the effective sources of the lattice dislocations in the presence of a large number of the grain boundary dislocations near the nanoprecipitates. The theoretical dependences of the flow stress on the degree of the plastic deformation demonstrate good qualitative and quantitative agreement with the experimental data. The emission of the lattice dislocations from nanoprecipitates provides higher plasticity compared to the emission of the lattice dislocations from the triple junctions of the grain boundaries. Keywords: ultrafine-grained materials, aluminum alloys, nanoprecipitates, annealing, severe plastic deformation by high-pressure torsion, dislocations, grain boundaries.
  1. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bry a, J. vCzek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janevcek, M. Kawasaki, P. Kral, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, A. Revesz, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu. Mater. Res. Lett. 10, 4, 163 (2022)
  2. Y.T. Zhu, Y.H. Zhao, J.F. Bingert, T.D. Topping, P.L. Sun, X.Z. Liao, E.J. Lavernia. Mater. Sci. Eng. A 772, 138706 (2020)
  3. J. Gubicza. Mater. Trans. 60, 1230 (2019)
  4. X. Sauvage, G. Wilde, S. Divinski, Z. Horita, R. Valiev. Mater. Sci. Eng. A 540, 1 (2012)
  5. A.A. Nazarov. Lett. Mater. 8, 3, 372 (2018)
  6. I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu. Progr. Mater. Sci. 94, 462 (2018)
  7. T.S. Orlova, D.I. Sadykov, D.V. Danilov, N.A. Enikeev, M.Yu. Murashkin. Mater. Lett. 330, 130490 (2021)
  8. D. Raabe, D. Ponge, O. Dmitrieva, B. Sander. Scr. Mater. 60, 1141 (2009)
  9. K. Ming, X. Bi, J. Wang. Int. J. Plast. 100, 177 (2018)
  10. S.-H. Kim, H. Kim, N.J. Kim. Nature 518, 77 (2015)
  11. A.M. Mavlyutov, T.S. Orlova, E.Kh. Yapparova. Tech. Phys. Lett. 46, 916 (2020)
  12. V.D. Sitdikov, M.Yu. Murashkin, R.Z. Valiev. J. Alloys Compd. 735, 1792 (2018)
  13. Y. Nasedkina, X. Sauvage, E.V. Bobruk, M.Yu. Murashkin, R.Z. Valiev, N.A. Enikeev. J. Alloys Compd. 710, 736 (2017)
  14. W. Xu, X.C. Liu, K. Lu. Acta Mater. 152, 138 (2018)
  15. H. Jia, R. Bj rge, L. Cao, H. Song, K. Marthinsen, Y. Li. Acta Mater. 155, 199 (2018)
  16. L.F. Shuai, T.L. Huang, G.L. Wu, N. Hansen, X. Huang. IOP Conf. Ser.: Mater. Sci. Eng. 219, 012038 (2017)
  17. T.S. Orlova, D.I. Sadykov, M.Yu. Murashkin, N.A. Enikeev. Phys. Solid State 63, 1744 (2021)
  18. T.S. Orlova, D.I. Sadykov, D.V. Danilov, M.Y. Murashkin. J. Alloy Compd. 931, 167540 (2023)
  19. V. Borovikov, M.I. Mendelev, A.H. King. Scr. Mater. 154, 12 (2018)
  20. S. Peng, Y. Wei, H. Gao. PANS 117, 5204 (2020)
  21. J.M. Howe, W.E. Benson, A. Garg, Y.C. Chang. Mater. Sci. Forum 189-190, 255 (1995)
  22. S.J. Wang, G. Liu, J. Wang, A. Misra. Mater. Character. 142, 170 (2018)
  23. G. Liu, M. Gong, D. Xie, J. Wang. JOM 71, 4, 1200 (2019)
  24. Q. Zhou, D.P. Hua, Y. Du, Y. Ren, W.W. Kuang, Q.S. Xia, V. Bhardwaj. Int. J. Plast. 120, 115 (2019)
  25. G. Liu, S. Wang, A. Misra, J. Wang. Acta Mater. 186, 443 (2020)
  26. N.V. Skiba, T.S. Orlova, M.Yu. Gutkin. Phys. Solid State. 62, 2094 (2020)
  27. K.N. Mikaelyan, M.Yu. Gutkin, E.N. Borodin, A.E. Romanov. Int. J. Solid Struct. 161, 127 (2019)
  28. A.M. Smirnov, S.A. Krasnitckii, M.Yu. Gutkin. Acta Mater. 186, 494 (2020)
  29. V.I. Vladimirov, M.Yu. Gutkin, S.P. Nikanorov, A.E. Romanov. Mekhanika kompozitnykh materialov 4, 730 (1986). (in Russian)
  30. K.L. Malyshev, M.Yu. Gutkin, A.E. Romanov, A.A. Sitnikova, L.M. Sorokin. Sov. Phys. Solid State (USA) 30, 7, 1176 (1988)
  31. M.Yu. Gutkin, I.A. Ovid'ko, N.V. Skiba. Phil. Mag. 88, 1137 (2008)
  32. T. Mura. In: Advances in Material Research / Ed. H. Herman. Interscience, N.Y. 3 (1968). P. 1
  33. J.P. Hirth, J. Lothe. Theory of dislocations. Wiley, N.Y. (1982)
  34. C.J. Smithells, E.A. Brands. Metals reference book. Butterworths, London (1976)
  35. M.Yu. Gutkin, N.V. Skiba, T.S. Orlova. Mater. Phys. Mech. 50, 431 (2022).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru