Influence of external influences on the creep of aluminum alloys with microscopic inclusions at room temperatures
Friha М.1, Pshonkin D. E.1, Skvortsov P. A.2, Nikolaev V. K.1, Skvortsov A. A.1
1Moscow Polytechnic University, Moscow, Russia
2Blagonravov Institute of Machine Science, Russian Academy of Sciences, Moscow, Russia
Email: skvortsovaa2009@yandex.ru

PDF
It is devoted to the experimental study of the creep of an aluminum alloy containing microscopic inclusions. It was found that preliminary electric ignition (j<3· 106 A/m2) of the material leads to an increase in the creep of the samples. The reasons for the observed changes are associated by the authors with the formation of local areas of high mechanical stresses near the interface of the inclusion - matrix interface. The assessment of the level of emerging local thermoelastic stresses in aluminum deltaT~ 35 MPa, as well as the characteristic size of such areas (~ 2 μm). The observed increase in creep is determined by the resultant effect of residual stresses and stresses of thermal nature, which contributes to the creation of additional local sources of deformation in the interfacial regions. Local stress concentrators lead to a local increase in the number of mobile dislocations, which is the main reason for the change in the mechanical properties of the aluminum alloy under consideration with microscopic inclusions. Keywords: Aluminum alloys, plastic deformation, creep, phase interface, dislocation dynamics.
  1. Y.-C. Liu, S.-K. Lin. JOM 71, 9, 3094 (2019)
  2. X. Zhang, S. Xiang, K. Yi, J. Guo. Acta Metallurgica Sinica 58, 5, 581 (2022)
  3. A. Kumar, A. Arockiarajan. J. Magn. Magn. Mater. 546, 168821 (2022)
  4. M.H. Ahmad Khairi, S.A. Mazlan, N.M. Hapipi, N. Nordin. Adv. Eng. Mater. 21, 3, 1800696 (2019)
  5. J. Wang, I. Timokhina, K. Sharp, A. Shekhter, Q. Liu. Surf. Coatings Technol. 445, 128726 (2022)
  6. S.-H. Peng, J.-J. Yang, Y. Li. J. Plasticity Eng. 21, 3, 85 (2014)
  7. A. Lebied, B. Necib, M. Sahli. Mech. Mech. Eng. 21, 2, 233 (2017)
  8. A. Rajput, P.S. Kumar. J. Alloys Comp. 869, 159213 (2021)
  9. I. Sabirov, O. Kolednik. Scripta Mater. 53, 12, 1373 (2005)
  10. Y. Sun, X. Huang, C. Liu, M. Zhou, Z. Xinfang. J. Alloys Comp. 934, 10, 167903 (2023)
  11. N. Hou, K. Yang. Proced. Eng. 17, 292 (2011)
  12. O.B. Skvortsov, V.I. Stashenko, O.A. Troitsky. Lett. Mater. 11, 4, 473 (2021)
  13. A. Xiao, C. Huang, X. Cui, Z. Yan, Z. Yu. J. Alloys Comp. 911, 165021 (2022)
  14. J. Luo, H. Luo, C. Liu, T. Zhao, R. Wang, Y. Ma. Mater. Sci. Eng. A 798, 139990 (2020)
  15. D. Du, James C. Haley, A. Dong, Y. Fautrelle, D. Shu, G. Zhu, X. Li, B. Sun, E. Lavernia. J. Mater. Des. 181, 107923 (2019)
  16. A. Skvortsov, D. Pshonkin, E. Kunitsyna, R. Morgunov, E. Beaugnon. J. Appl. Phys. 125, 2, 023903 (2019)
  17. A.A. Skvortsov, D.E. Pshonkin, M.N. Luk'yanov, M.R. Rybakova. J. Mater. Res. Technol. 8, 3, 2481 (2019)
  18. A.A. Skvortsov, N.A. Khripach, B.A. Papkin, D.E. Pshonkin. Microelectron. Int. 35, 4, 197 (2018)
  19. A.A. Skvortsov, V.E. Muradov, E.A. Kashtanova. Tech. Phys. Lett. 37, 6, 507 (2011)
  20. D.K. Belaschenko, A.M. Orlov, V.I. Parkhomenko, Neorgan. materialy 11, 10, 1728 (1975). (in Russian)
  21. Fizicheskiye velichiny. Spravochnik / eds I.S. Grigoriyev, Ye.Z. Meylikhov, Energoatomizdat, M., (1991), 1232 p. (in Russian).
  22. L.S. Sinyov, Nauka i obrazovanie, MGTU im. N.E. Baumana, M. 12, 946 (2014). (in Russian)
  23. A.N. Orlov, Vvedeniye v teoriyu defeltov v kristallakh, Vyssh. shk., M., (1983), 144 p. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru