Heat capacity of CoFe2O4 and 0.3CoFe2O4-0.7PbTiO3 composite
Mitarov R.G.1, Kallaev S. N.2, Omarov Z. M.2, AbdulvahidovK.G.3
1Dagestan State Technical University, Makhachkala, Russia
2Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
3Southern Federal University, Rostov-on-Don, Russia
Email: kallaev-s@rambler.ru

PDF
The temperature dependence of the heat capacity of the CoFe2O4 ferromagnet and the 0.3CoFe2O4-0.7PbTiO3 multiferroic composite in the temperature range 150-820 K has been studied. heat capacity over a wide temperature range. It is noted that the additional component of the heat capacity is due to the transition of cobalt or iron ions to higher energy levels, as well as due to the distortion of the lattice parameters due to the appearance of three coexisting phases. Keywords: heat capacity, multiferroic composite, Schottky effect.
  1. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin. Nat. Rev. Mater. 1, 1 (2016)
  2. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu. Actuators 5, 9, 1 (2016)
  3. Y.J. Wang, J.F. Li, D. Viehland. Mater. Today 17, 269 (2014)
  4. M. Bichurin, V. Petrov, S. Priya, A. Bhalla. Adv. Condens. Matter Phys. 129794, 1 (2012)
  5. R.A. Islam, S. Priya. Adv. Condens. Matter Phys. 320612, 1 (2012)
  6. C.W. Nan. Phys. Rev. B 50, 6082 (1994)
  7. N.A. Spaldin, M. Fiebig. Science 309, 391 (2005)
  8. D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zheng. J. Magn. Magn. Mater. 305, 68 (2006)
  9. R. Migoni, H. Bilz, D. Bauerle. Phys. Rev. Lett. 37, 17, 1155 (1976)
  10. H.S. Bhatti, S.T. Hussain, F.A. Khan, S. Hussain. Appl. Surf. Sci. 367, 291 (2016)
  11. M.Kuwabara. J. Am. Ceram. Soc. 73, 1438 (1990)
  12. Z. Tan, A.L. Roytburd, I. Levin, K. Seal, B.J. Rodriguez, S. Jesse, S. Kalinin, A. Baddorf. Appl. Phys. Lett. 93, 074101 (2008)
  13. X. Zhang, L. Zhu, Y. Dong, W. Weng, G. Han, N. Ma, P. Du. J. Mater. Chem. 20, 10856 (2010)
  14. J.S. Liu, Y.C. Xu, T. Li. Mater. Sci. Forum 687, 174 (2011)
  15. B. Abdulvakhidov, Zh. Li, K. Abdulvakhidov, A. Soldatov. Appl. Phys. A 128 (2022)
  16. S.N. Kallaev, R.G. Mitarov, Z.M. Omarov, G.G. Gadzhiev, L.A. Reznichenko. ZhETF 145, 2, 320 (2014) (in Russian)
  17. A.S. Okhotin, A.S. Pushkarsky, V.V. Gorbachev. Teplofizicheskiye svoistva poluprovodnikov. Atomizdat, M. (1972). 199 p. (in Russian)
  18. K.P. Belov, A.N. Goriaga. Vestn. Mosk.un-ta. Ser. 3. Fizika. Astronomiya, 34 (1), 115 (1993) (in Russian)
  19. M. Abes, C.T. Koops, S.B. Hrkac, J. McCord, N.O. Urs, N. Wolff, L. Kienle, W.J. Ren, L. Bouchenoire, B.M. Murphy, O.M. Magnussen. Phys. Rev. B 93, 195427 (2016)
  20. V.P. Zhuze. Fizicheskie svoistva khal'kogenidov redkozemel'nykh elementov. Nauka, L. (1973). 304 s. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru