Sidorov V. L.1, Kopkak O. V.1, Korolev D. V.2, Piskorskii V. P.1, Vallev R. A.2, Morgunov R. B.1,2,3
1Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
2All-Russian Scientific Research Institute of Aviation Materials of the Research Center "Kurchatov Institute", Moscow, Russia
3Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Email: spintronics2022@yandex.ru, morgunov2005@yandex.ru
Tb7Fe90B3 microwires with a diameter of 50-100 μm were obtained by the method of ultrafast cooling of the melt. It has been established that the microwires contain the tetragonal Tb2Fe14B1 phase and the cubic TbFe3 phase. These two phases differ in saturation fields of 100 Oe and 10 kOe, respectively. The anisotropy of the coercive force of TbFeB microwires also indicates the coexistence of two magnetic phases. The data obtained are compared with the magnetic properties of PrDyFeCoB microwires, in which the coercive force is isotropic, and magnetization saturation is achieved in lower fields. Keywords: magnetic anisotropy, shape anisotropy, single-ion anisotropy, tetragonal phase, microwires.
- S.Y. Kang, S.R. Lee, S.H. Lim. IEEE Trans. Magn. 35, 5, 3826 (1999). https://doi.org/10.1109/20.800678
- Z. Ren, L. Chen, S. Li, H. Liu, Z. Lu. IOP Conf. Ser.: Mater. Sci. Eng. 103, 012006 (2015). https://doi.org/10.1088/1757-899X/103/1/012006
- S. Zhang, M. Zhang, Y. Qiao, X. Gao, D. Ling, S. Zhou. J. Magn. Magn. Mater. 322, 16, 2304 (2010). https://doi.org/10.1016/j.jmmm.2010.02.031
- H. Chiriac, T.-A. Ovari, A. Zhukov. J. Magn. Magn. Mater. 254-255, 469 (2003). https://doi.org/10.1016/S0304-8853(02)00875-2
- A.T. Pedziwiatr, H.Y. Chen, W.E. Wallace. J. Magn. Magn. Mater. 67, 3, 311 (1987). https://doi.org/10.1016/0304-8853(87)90189-2
- J. Bland. A Mossbauer Spectroscopy and Magnetometry Study of Magnetic Multilayers and Oxides. University of Liverpool (2002)
- J.D. Rinehart. Long. Chem. Sci. 2, 11, 2078 (2011). https://doi.org/10.1039/C1SC00513H
- T. Shima, H. Yokoyama, H. Fujimori. J. Alloys Compd 258, 1-2, 149 (1997). https://doi.org/10.1016/S0925-8388(97)00058-3
- G.J. Bowden, P.A.J. de Groot, J.D. O'Neil, B.D. Rainford, A.A. Zhukov. J. Phys.: Condens. Matter 16, 13, 2437 (2004). https://doi.org/10.1088/0953-8984/16/13/021
- J.-C. Shih, S.-Y. Hsu, L.-J. Chao, T.-S. Chin. J. Appl. Phys. 88, 6, 3541 (2000). https://doi.org/10.1063/1.1286469
- S.J. Clegg, R.D. Greenough, W.E. Hagston. J. Appl. Phys. 73, 10, 5589 (1993). https://doi.org/10.1063/1.353660
- R.M. Liu, M. Yue, W.Q. Liu, D.T. Zhang, J.X. Zhang, Z.H. Guo, W. Li. Appl. Phys. Lett. 99, 16, 162510 (2011). https://doi.org/10.1063/1.3653256
- D.V. Korolev, R.A. Valeev, V.P. Piskorsky, O.V. Koplak, O.S. Dmitriev, A.D. Talantsev, R.B. Morgunov. FTT 63, 8, 1098 (2021). (in Russian). http://dx.doi.org/10.21883/FTT.2021.08.51160.077
- E.V. Dvoretskaya, V.L. Sidorov, O.V. Koplak, D.V. Korolev, V.P. Piskorsky, R.A. Valeev, R.B. Morgunov. FTT 64, 8, 984 (2022). (in Russian). http://dx.doi.org/10.21883/FTT.2022.08.52694.373
- S.F. Cheng, R. Segnan, J.R. Cullen, A.E. Clark, M.Q. Huang. J. Appl. Phys. 73, 10, 5733 (1993). https://doi.org/10.1063/1.353607
- E.N. Kablov, O.G. Ospennikova, V.P. Piskorsky, D.V. Korolev, E.I. Kunitsyna, A.I. Dmitriev, R.B. Morgunov. Fizika nizkikh temperatur, 42, 1, 60 (2016). (in Russian)
- E.I. Kunitsyna, V.P. Piskorsky, D.V. Korolev, R.A. Valeev, V.V. Kucheryaev, R.B. Morgunov. FTT 60, 12, 2384 (2018). (in Russian). http://dx.doi.org/10.21883/FTT.2018.12.46728.128
- J.B. Thoelke. Magnetization and magnetostriction in highly magnetostrictive materials. United States (1993). https://doi.org/10.2172/10190712
- Y.V. Yang, Y.Y. Huang, Y.M. Jin. Appl. Phys. Lett. 98, 1, 012503 (2011). https://doi.org/10.1063/1.3533910
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.