Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
It is shown that the brittleness of a single-component covalent crystal (diamond, Si, Ge) is due to the "duplicity" of the paired potential of interatomic interaction for elastic (reversible) and for plastic (irreversible) deformation. This leads to the fact that the specific surface energy during plastic deformation of a covalent crystal is more than two times less than the specific surface energy during elastic deformation. Therefore, with a small deformation of a covalent crystal, it is energetically more advantageous to create a surface by irreversible breaking than by reversible elastic stretching. It is indicated that the brittle-ductile transition in a single-component covalent crystal is accompanied by metallization of covalent bonds on the surface. It is shown that the brittle-ductile transition temperature (TBDT) for single-component covalent crystals under static load has an upper limit: TBDT/Tm<0.45, where Tm - is the melting temperature. Keywords: interatomic covalent bond, brittleness, ductility, elementary semiconductors, brittle-ductile transition.
- V.I. Trefilov, Y.V. Milman, O.N. Grigoriev. Prog. Cryst. Growth Charact. 16, 225 (1988). DOI: 10.1016/0146-3535(88)90019-6
- P.B. Hirsch, S.G. Roberts. Phil. Mag. A 64, 1, 55 (1991). DOI: 10.1080/01418619108206126.
- F.C. Serbena, S.G.Roberts. Acta Metallurgica Mater. 42, 7, 2505 (1994). DOI: 10.1016/0956-7151(94)90331-x
- A. Giannattasio, S.G. Roberts. Phil. Mag. 87, 17, 2589 (2007). DOI: 10.1080/14786430701253197
- A. Mattoni, M. Ippolito, L. Colombo. Phys. Rev. B 76, 22, 224103 (2007). DOI: 10.1103/PhysRevB.76.224103
- G. Cheng, Y. Zhang, T.-H. Chang, Q. Liu, L. Chen, W.D. Lu, T. Zhu, Y. Zhu. Nano Lett. 19, 8, 5327 (2019). DOI: 10.1021/acs.nanolett.9b01789
- T. Cheng, D. Fang, Y. Yang. J. Appl. Phys. 123, 8, 085902 (2018). DOI: 10.1063/1.5017171
- H. Wang, S.I. Morozov, W.A. Goddard. Phys. Rev. B 99, 16, 161202 (2019). DOI: 10.1103/PhysRevB.99.161202
- T. Zhang, F. Jiang, H. Huang, J. Lu, Y. Wu, Z. Jiang, X. Xu, Towards. Int. J. Extreme Manufact. 3, 2, 022001 (2021). DOI: 10.1088/2631-7990/abdfd7
- G. Sun, X. Feng, X. Wu, S. Zhang, B. Wen. J. Mater. Sci. Technol. 114, 215 (2022). DOI: 10.1016/j.jmst.2021.10.032
- P.A. Rebinder, E.D. Shchukin. Sov. Phys. Usp. 15, 5, 533 (1973) DOI: 10.1070/PU1973v015n05ABEH005002
- M.N. Magomedov. Russ. J. Inorg. Chem. 49, 12, 1906 (2004)
- E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London(1961). 1333 p
- M.N. Magomedov. Tech. Phys. 58, 12, 1789 (2013). DOI: 10.1134/S1063784213120153
- M.N. Magomedov. Phys. Solid State 59, 6, 1085 (2017). DOI: 10.1134/S1063783417060142
- M.N. Esfahani. Solid State Commun. 344, 114656 (2022). DOI: 10.1016/j.ssc.2022.114656
- M.N. Magomedov. Tech. Phys. 62, 5, 661 (2017). DOI: 10.1134/S1063784217050176
- M.N. Magomedov. Phys. Solid State 61, 4, 642 (2019). DOI: 10.1134/S106378341904019X
- M.N. Magomedov. Nanotechnol. Russ. 14, 1-2 (2019) 21. DOI: 10.1134/S1995078019010063
- M.N. Magomedov. Tech. Phys. 58, 9, 1297. (2013). DOI: 10.1134/S106378421309020X
- R.J. Jaccodine. J. Electrochem. Soc. 110, 6, 524 (1963). DOI:10.1149/1.2425806
- D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya, D.C. Jacobson. Phys. Rev. Lett. 70, 11, 1643 (1993). DOI: 10.1103/PhysRevLett.70.1643
- A.A. Stekolnikov, F. Bechstedt. Phys. Rev. B 72, 12, 125326 (2005). DOI: 10.1103/PhysRevB.72.125326
- J.M. Zhang, H.Y. Li, K.W. Xu, V. Ji. Appl. Surf. Sci. 254, 13, 4128 (2008). DOI: 10.1016/j.apsusc.2007.12.049
- R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong. Sci. Data 3, 1, 1 (2016). DOI: 10.1038/sdata.2016.80
- B. Fu. Adv. Mater. 8, 2, 61 (2019). DOI: 10.11648/j.am.20190802.14
- R.R. Reeber. Mater. Res. Soc. Symp. Proc. Online Proc. Library (OPL) 453, 239 (1996). DOI: 10.1557/PROC-453-239
- B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Transact. JWRI. Special Issue (Jpn) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
- A.D. Evstifeev, A.A. Gruzdkov, Y.V. Petrov. Tech. Phys. 58, 7, 989 (2013). DOI: 10.1134/S1063784213070086
- L. Chen, X. Yang, Q. Huang, C. Fang, A. Shi, R. Liu. Diamond Rel. Mater. 95, 99 (2019). DOI: 10.1016/j.diamond.2019.04.003
- L. Gavioli, M.G. Betti, C. Mariani. Phys. Rev. Lett. 77, 18, 3869 (1996). DOI: 10.1103/PhysRevLett.77.3869
- A. Santoni, L. Petaccia, V.R. Dhanak, S. Modesti. Surf. Sci. 444, 1-3, 156 (2000). DOI: 10.1016/S0039-6028(99)01025-0
- G.E. Abrosimova, D.V. Matveev, A.S. Aronin. Phys.-Usp. 65, 3, 227 (2022). DOI: 10.3367/UFNe.2021.04.038974
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.