On the brittleness of elementary semiconductors
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
It is shown that the brittleness of a single-component covalent crystal (diamond, Si, Ge) is due to the "duplicity" of the paired potential of interatomic interaction for elastic (reversible) and for plastic (irreversible) deformation. This leads to the fact that the specific surface energy during plastic deformation of a covalent crystal is more than two times less than the specific surface energy during elastic deformation. Therefore, with a small deformation of a covalent crystal, it is energetically more advantageous to create a surface by irreversible breaking than by reversible elastic stretching. It is indicated that the brittle-ductile transition in a single-component covalent crystal is accompanied by metallization of covalent bonds on the surface. It is shown that the brittle-ductile transition temperature (TBDT) for single-component covalent crystals under static load has an upper limit: TBDT/Tm<0.45, where Tm - is the melting temperature. Keywords: interatomic covalent bond, brittleness, ductility, elementary semiconductors, brittle-ductile transition.
  1. V.I. Trefilov, Y.V. Milman, O.N. Grigoriev. Prog. Cryst. Growth Charact. 16, 225 (1988). DOI: 10.1016/0146-3535(88)90019-6
  2. P.B. Hirsch, S.G. Roberts. Phil. Mag. A 64, 1, 55 (1991). DOI: 10.1080/01418619108206126.
  3. F.C. Serbena, S.G.Roberts. Acta Metallurgica Mater. 42, 7, 2505 (1994). DOI: 10.1016/0956-7151(94)90331-x
  4. A. Giannattasio, S.G. Roberts. Phil. Mag. 87, 17, 2589 (2007). DOI: 10.1080/14786430701253197
  5. A. Mattoni, M. Ippolito, L. Colombo. Phys. Rev. B 76, 22, 224103 (2007). DOI: 10.1103/PhysRevB.76.224103
  6. G. Cheng, Y. Zhang, T.-H. Chang, Q. Liu, L. Chen, W.D. Lu, T. Zhu, Y. Zhu. Nano Lett. 19, 8, 5327 (2019). DOI: 10.1021/acs.nanolett.9b01789
  7. T. Cheng, D. Fang, Y. Yang. J. Appl. Phys. 123, 8, 085902 (2018). DOI: 10.1063/1.5017171
  8. H. Wang, S.I. Morozov, W.A. Goddard. Phys. Rev. B 99, 16, 161202 (2019). DOI: 10.1103/PhysRevB.99.161202
  9. T. Zhang, F. Jiang, H. Huang, J. Lu, Y. Wu, Z. Jiang, X. Xu, Towards. Int. J. Extreme Manufact. 3, 2, 022001 (2021). DOI: 10.1088/2631-7990/abdfd7
  10. G. Sun, X. Feng, X. Wu, S. Zhang, B. Wen. J. Mater. Sci. Technol. 114, 215 (2022). DOI: 10.1016/j.jmst.2021.10.032
  11. P.A. Rebinder, E.D. Shchukin. Sov. Phys. Usp. 15, 5, 533 (1973) DOI: 10.1070/PU1973v015n05ABEH005002
  12. M.N. Magomedov. Russ. J. Inorg. Chem. 49, 12, 1906 (2004)
  13. E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London(1961). 1333 p
  14. M.N. Magomedov. Tech. Phys. 58, 12, 1789 (2013). DOI: 10.1134/S1063784213120153
  15. M.N. Magomedov. Phys. Solid State 59, 6, 1085 (2017). DOI: 10.1134/S1063783417060142
  16. M.N. Esfahani. Solid State Commun. 344, 114656 (2022). DOI: 10.1016/j.ssc.2022.114656
  17. M.N. Magomedov. Tech. Phys. 62, 5, 661 (2017). DOI: 10.1134/S1063784217050176
  18. M.N. Magomedov. Phys. Solid State 61, 4, 642 (2019). DOI: 10.1134/S106378341904019X
  19. M.N. Magomedov. Nanotechnol. Russ. 14, 1-2 (2019) 21. DOI: 10.1134/S1995078019010063
  20. M.N. Magomedov. Tech. Phys. 58, 9, 1297. (2013). DOI: 10.1134/S106378421309020X
  21. R.J. Jaccodine. J. Electrochem. Soc. 110, 6, 524 (1963). DOI:10.1149/1.2425806
  22. D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya, D.C. Jacobson. Phys. Rev. Lett. 70, 11, 1643 (1993). DOI: 10.1103/PhysRevLett.70.1643
  23. A.A. Stekolnikov, F. Bechstedt. Phys. Rev. B 72, 12, 125326 (2005). DOI: 10.1103/PhysRevB.72.125326
  24. J.M. Zhang, H.Y. Li, K.W. Xu, V. Ji. Appl. Surf. Sci. 254, 13, 4128 (2008). DOI: 10.1016/j.apsusc.2007.12.049
  25. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong. Sci. Data 3, 1, 1 (2016). DOI: 10.1038/sdata.2016.80
  26. B. Fu. Adv. Mater. 8, 2, 61 (2019). DOI: 10.11648/j.am.20190802.14
  27. R.R. Reeber. Mater. Res. Soc. Symp. Proc. Online Proc. Library (OPL) 453, 239 (1996). DOI: 10.1557/PROC-453-239
  28. B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Transact. JWRI. Special Issue (Jpn) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
  29. A.D. Evstifeev, A.A. Gruzdkov, Y.V. Petrov. Tech. Phys. 58, 7, 989 (2013). DOI: 10.1134/S1063784213070086
  30. L. Chen, X. Yang, Q. Huang, C. Fang, A. Shi, R. Liu. Diamond Rel. Mater. 95, 99 (2019). DOI: 10.1016/j.diamond.2019.04.003
  31. L. Gavioli, M.G. Betti, C. Mariani. Phys. Rev. Lett. 77, 18, 3869 (1996). DOI: 10.1103/PhysRevLett.77.3869
  32. A. Santoni, L. Petaccia, V.R. Dhanak, S. Modesti. Surf. Sci. 444, 1-3, 156 (2000). DOI: 10.1016/S0039-6028(99)01025-0
  33. G.E. Abrosimova, D.V. Matveev, A.S. Aronin. Phys.-Usp. 65, 3, 227 (2022). DOI: 10.3367/UFNe.2021.04.038974

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru