Kuznetsova M. S.
1, Bataev M. N.
1, Chukeev M. A.
1, Rostovtsev N.D.
1, Verbin S. Yu.
1, Ignatiev I. V.
1, Davydov V. Yu.
2, Smirnov A. N.
2, Eliseyev I. A.
2, Kolobkova E. V.
3,41Spin Optics Laboratory, Saint Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3ITMO University, St. Petersburg, Russia
4Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
Email: mashakuznecova@bk.ru, batae1996@gmail.com, maxchukeev@gmail.com, nick.romero@bk.ru, s.verbin@spbu.ru, i.ignatiev@spbu.ru, valery.davydov@mail.ioffe.ru, alex.smirnov@mail.ioffe.ru, ilya.eliseyev@mail.ioffe.ru, kolobok106@rambler.ru
The anti-Stokes photoluminescence (PL) of perovskite CsPbBr3 nanocrystals in a fluorophosphate glass matrix has been found and experimentally studied upon optical excitation to the low-energy edge of the photoluminescence band. The intensity of anti-Stokes PL depends linearly on the pumping power and increases rapidly with increasing temperature. A simple three-level model is proposed that describes well the main regularities of the observed phenomenon. Keywords: perovskites, nanocrystals, anti-Stokes photoluminescence, CsPbBr3, fluorophosphate glass.
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng. Adv. Funct. Mater., 26, 2435-2445 (2016). DOI: 10.1002/adfm.201600109
- S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M.V. Kovalenko. Nature, 6, 8056 (2015). DOI: 10.1038/ncomms9056
- P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee. Chem. Commun., 52, 2067-2070 (2016). DOI: 10.1039/c5cc08643d
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith. Energy Environ. Sci., 7, 982-988 (2014). DOI: 10.1039/c3ee43822h
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R. X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15, 3692-3696 (2015). DOI: 10.1021/nl5048779
- F.O. Saouma, C.C. Stoumpos, J. Wong, M.G. Kanatzidis, J. Jang. Nature Commun., 8, 742 (2017). DOI: 10.1038/ s41467-017-00788-x
- D. Wang, D. Wu, D. Dong, W. Chen, J. Hao, J. Qin, B. Xu, K. Wang, X. Sun. Nanoscale, 8, 11565-11570 (2016). DOI: 10.1039/c6nr01915c
- S. Pathak, N. Sakai, F.W.R. Rivarola, S.D. Stranks, J. Liu, G.E. Eperon, C. Ducati, K.Wojciechowski, J.T. Griffiths, A.A. Haghighirad, A. Pellaroque, R.H. Friend, H.J. Snaith. Chem. Mater., 29, 5168-5173 (2017). DOI: 10.1021/acs.chemmater.5b03769
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Graetzel, H. Han. Science, 345, 295-298 (2014). DOI: 10.1126/science.1254763
- A Swarnkar, V. Kumar Ravi, R. Chulliyil, M. Irfanullah, A. Chowdhury, A. Nag. Chem. Int. Ed, 54 ,15424-15428 (2015). DOI: 10.1002/anie.201508276
- H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach. Chem. Sci., 7, 5699-5703 (2016). DOI: 10.1039/C6SC01758D
- S. Pathak, N. Sakai, F.W.R. Rivarola, S.D. Stranks, J. Liu, G.E. Eperon, C. Ducati, K. Wojciechowski, J.T. Griffiths, A.A. Haghighirad, A. Pellaroque, R.H. Friend, H. J. Snaith. Chem. Mater., 27, 8066-8075 (2015). DOI: 10.1021/acs.chemmater.5b03769
- L. Protesescu, S. Yakunin, O. Nazarenko, D.N. Dirin, M.V. Kovalenko. ACS Appl. Nano Mater., 1, 1300-1308 (2018). DOI: 10.1021/acsanm.8b00038
- Y. Wei, Z. Cheng, J. Lin. Chem. Soc. Rev., 48, 310-350 (2019). DOI: 10.1039/c8cs00740c
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang. Chem. Soc. Rev., 48, 3842-3867 (2019). DOI: 10.1039/C8CS00853A
- Z. Zhiqin, Lihong L., Y. Facheng, Jun Zhao. J. Lum., 216, 116722 (2019). DOI: 10.1016/j.jlumin.2019.116722
- J. Ren, T. Li, X Zhou, X. Dong, A.V. Shorokhov, M.B. Semenov, V.D. Krevchik, Y. Wang. Chem. Eng. J., 358, 30-39 (2019). DOI: 10.1016/j.cej.2018.09.149
- S. Liu, Y. Luo, M. He, X. Liang, W. Xiang. J. Europ. Ceramic Soc., 38, 1998-2004 (2018). DOI: 10.1016/j.jeurceramsoc.2017.10.012
- S. Liu, M. He, X. Di, P. Li, W. Xiang, X. Liang. Ceram. Inter., 44, 4496-4499 (2018). DOI: 10.1016/j.ceramint.2017.12.012
- P. Li, C. Hu, L. Zhou, J. Jiang, Y. Cheng, M. He, X. Liang, W. Xiang. Mater. Lett., 209, 483-485 (2017). DOI:10.1016/jmatlet.2017.08.079
- B. Ai, Ch. Liu, Z. Deng, J. Wang, J. Han, X. Zhao. Phys. Chem. Phys., 19, 17349-17355 (2017). DOI:10.1039/c7cp02482g
- B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao. J. Am. Ceram. Soc., 99, 2875-2877 (2016). DOI:10.1111/jace.14400
- Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, J. Han. Adv. Optical Mater., 7, 1801663 (2019). DOI: 10.1002/adom.201801663
- S. Liu, M. He, X. Di, P. Li, W. Xiang, X. Liang. Ceram. Inter., 44, 4496-4499 (2018). DOI: 10.1016/j.ceramint.2017.12.012
- E.V. Kolobkova, M.S. Kuznetsova, N.V. Nikonorov. J. Non-Cryst. Solids, 563, 120811 (2021). DOI: 10.1016/j.jnoncrysol.2021.120811
- X. Ma, F. Pan, H. Li, P. Chen, C. Ma, L. Zhang, H. Niu, Y. Zhu, S. Xu, H. Ye. J. Phys. Chem. Lett., 10, 5989 (2019). DOI: 10.1021/acs.jpclett.9b02289
- E.V. Kolobkova, A.A. Lipovskii, V.D. Petrikov, V.G. Melekhin. Glass Phys. Chem., 28, 251-255 (2002). DOI: 10.1023/A:1019918530283
- A.A. Lipovskii, E.V. Kolobkova I.E. Yakovlev. J. Europe. Ceram. Soc., 19, 865-869. (1999). DOI: 10.1016/S0955-2219(98)00333-1
- E. Kolobkova, M.S. Kuznetsova, N. Nikonorov. ACS APPL. Nano Mater., 2, 6928-6938 (2019). DOI: 10.1021/acsanm.9b01419
- E. Kolobkova, Z. Lipatova, A. Abdrshin, N. Nikonorov. Optical Materials, 65, 124-128 (2017). DOI: 10.1016/j.optmat.2016.09.033
- G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti, D. Cahen. J. Phys. Chem. Lett., 11, 2490 (2020). DOI: 10.1021/acs.jpclett.0c00295
- B.T. Diroll, H. Zhou, R.D. Schaller. Adv. Funct. Mater., 28, 1800945 (2018). DOI: 10.1002/adfm.201800945
- B.T. Diroll, G. Nedelcu, M.V. Kovalenko, R.D. Schaller. Adv. Funct. Mater., 27, 1606750 (2017). DOI: 10.1002/adfm.201606750
- B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, X. Zhao. Phys. Chem. Chem. Phys., 19, 17349-17355 (2017). DOI: 10.1039/C7CP02482G
- O.V. Kozlov, R. Singh, B. Ai, J. Zhang, C. Liu, V.I. Klimov. Zeitschrift Fur Phys. Chem., 232, 1495-1511 (2018). DOI: 10.1515/zpch-2018-1168
- S.Z. Liu, A.R. DeFilippo, M. Balasubramanian, Z.X. Liu, S.G. Wang, Y. Chen, S. Chariton, V. Prakapenka, X.P. Luo, L.Y. Zhao, J. San Martin, Y.X. Lin, Y. Yan, S.K. Ghose, T.A. Tyson. Advanced Science, 8(18), 2003046 (2021). DOI: 10.1002/advs.202003046
- A.S. Kurdyubov, A.V. Trifonov, I.Ya. Gerlovin, B.F. Gribakin, P.S. Grigoryev, A.V. Mikhailov, I.V. Ignatiev, Yu.P. Efimov, S.A. Eliseev, V.A. Lovtcius, M. Assmann, M. Bayer, A.V. Kavokin. Phys. Rev. B, 104, 035414 (2021). DOI: 10.1103/PhysRevB.104.035414
- A.G. del Aguila, T. Thu Ha Do, J. Xing, Wen Jie Jee, J.B. Khurgin, Q. Xiong. Nano Research, 13(7), 1962-1969 (2020). DOI: 10.1007/s12274-020-2840-7
- S. Zhang, M. Zhukovskyi, B. Jank?, M. Kuno. NPG Asia Mater., 11, 54 (2019). DOI: 10.1038/s41427-019-0156-4
- B. J. Roman, N.M. Villegas, K. Lytle, M. Sheldon. Nano Lett., 20 (12), 8874-8879 (2020). DOI: 10.1021/acs.nanolett.0c03910
- W. Zhang, Y. Ye, C. Liu, J. Wang, J. Ruan, X. Zhao, J. Han. Adv. Optical Mater., 9, 2001885 (2021). DOI: 10.1002/adom.202001885
- V.V. Belykh, M.L. Skorikov, E.V. Kulebyakina, E.V. Kolobkova, M.S. Kuznetsova, M.M. Glazov, D.R. Yakovlev. Nano Lett., 22, 4583-4588 (2022). DOI: 10.1021/acs.nanolett.2c01673
- M.A. Becker, R. Vaxenburg, G. Nedelcu, P.C. Sercel, A. Shabaev, M.J. Mehl, J.G. Michopoulos, S.G. Lambrakos, N. Bernstein, J.L. Lyons, T. St?ferle, R.F. Mahrt, M.V. Kovalenko, D.J. Norris, G. Raino, Al.L. Efros. Nature, 53, 189 (2018). DOI: 10.1038/nature25147
- F. Urbach. Phys. Rev., 92, 1324 (1953). DOI: 10.1103/PhysRev.92.1324
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.