Sorokin N. I.
1, Ivanovskaya N. A.1, Buchinskaya I. I.1
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: nsorokin1@yandex.ru
The impedance spectroscopy in the temperature range 302-779 K was used to study the ionic conductivity of the Pr0.9Pb0.1F2.9 nanoceramics, obtained by cold pressing of the powder, mechanically synthesized from components of PbF2 and PrF3. The studied material is the solid solution with tysonite-type structure (sp. gr. P3c1, Z=6) and lattice parameters a=7.0906(4) and c=7.2538(4) Angstrem. With increasing temperature, the conductivity of the ceramic increases from 1.9·10-5 to 6.7·10-2 S/cm, and the activation enthalpy of ion transport Delta Hsigma=0.407±0.005 and 0.345±0.005 eV at 302-502 and 502-779 K, respectively. The electrical conductivity mechanism is due to the migration of fluorine vacancies along the boundaries of nanocrystalline grains. The intragranular conductivity of ceramics is close to the electrical conductivity of a single crystal of the same composition. Cold pressed ceramics Pr0.9Pb0.1F2.9 can be used as a promising solid electrolyte in "room" fluorine-ion current sources. Keywords: ionic conductivity, impedance spectroscopy, fluorides, tysonite structure, cold pressed nanoceramics, mechanosynthesis.
- I.I. Buchinskaya, N.A. Arkharova, A.G. Ivanova, D.N. Karimov. Kristallografiya 65, 147 (2020). (in Russian)
- B.P. Sobolev, N.I. Tkachenko. J. Less-Common. Met. 85, 155 (1982)
- B.P. Sobolev, K.B. Seiranian. J. Solid State Chem. 39, 337 (1981)
- B.P. Sobolev, P.P. Fedorov. J. Less-Common. Met. 60, 33 (1978)
- M. El Omari, J.M. Reau, J. Senegas. Phys. Status Solidi A 121, 415 (1990)
- N.I. Sorokin, D.N. Karimov, I.I. Buchinskaya. Elektrokhimiya 57, 465 (2021). (in Russian)
- B.P. Sobolev, N.I. Sorokin, N.B. Bolotina. Photonic \& electronic properties of fluoride materials / Eds A. Tressaud, K. Poeppelmeier. Elsevier, Amsterdam (2016) P. 465
- N.I. Sorokin, B.P. Sobolev, E.A. Krivandina, Z.I. Zhmurova. Kristallografiya 60, 123 (2015). (in Russian)
- B.P. Sobolev, N.I. Sorokin, E.A. Krivandina, Z.I. Zhmurova. Kristallografiya 59, 609 (2014). (in Russian)
- M. El Omari, J. Senegas, J.M. Reau. Solid State Ionics 107, 281 (1998)
- N.I. Sorokin, B.P. Sobolev. Kristallografiya 61, 468 (2016). (in Russian)
- I.I. Buchinskaya, D.N. Karimov. Crystals 11, 629 (2021). https://doi.org/10.3390/cryst11060629
- V. Vasyliev, P. Molina, M. Nakamura, E.G. Villora, K. Shimamura. Opt. Mater. 33, 1710 (2011)
- T. Takahashi, H. Iwahara, T. Ishikava. J. Electrochem. Soc. 124, 280 (1977)
- I.V. Murin, O.V. Glumov, Yu.V. Amelin. ZhPKh 53, 1474 (1980). (in Russian)
- N.I. Sorokin, A.N. Smirnov, P.P. Fedorov, B.P. Sobolev. Elektrokhimiya 45, 641 (2009). (in Russian)
- N.I. Sorokin, N.A. Ivanovskaya, B.P. Sobolev. Kristallografiya 59, 286 (2014).(in Russian)
- C. Rongeat, M. Anji Reddy, R. Witter, M. Fichtner. ACS Appl. Mater. Interfaced. 6, 2103 (2014)
- A. Duvel, J. Bednarcik, V. Sepelak, P. Heitjans. J. Phys. Chem. C 118, 7117 (2014)
- P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Osiko. J. Fluorine Chem. 132, 1012 (2011)
- M. Anji Reddy, M. Fichtner. J. Mater. Chem. 21, 17059 (2011)
- I. Mahammad, R. Witter, M. Fichtner, M. Anji Reddy. ASC Appl. Energy Mater. 2, 1553 (2019)
- K. Motohashi, T. Nakamura, Y. Kimura, Y. Uchimoto, K. Amezava. Solid State Ionics. 338, 113 (2019)
- L. Liu, L. Yang, D. Shao, K. Luo, C. Zou, Z. Luo, X. Wang. Ceram. Int. 46, 20521 (2020). doi.org/10.1016/j.ceramint.2020.05.161
- M. Anji Reddy, M. Fichtner. J. Phys. Chem. C 21, 17059 (2011)
- M. Gombotz, V. Pregartner, I. Hanzu, H. Martin, R. Wilkening. Nanomaterials 9, 1517 (2019). https://doi.org/10.3390/nano9111517
- B.P. Sobolev, I.A. Sviridov, V.I. Fadeeva, S.N. Sulyanov, N.I. Sorokin, Z.I. Zhmurova, I.I. Khodos, A.S. Avilov, M.A. Zaporozhets. Kristallografiya 53, 919 (2008). (in Russian)
- L.N. Patro. J. Solid State Electrochem. 24, 2219 (2020). https://doi.org/10.1007/s10008-020-04769-x
- A.K. Ivanov-Shits, L.N. Demyanets. Kristallografiya 48, S170 (2003). (in Russian)
- K.R. Achary, Y. Braskara, L.N. Patro. Mater. Lett. 301, 130337 (2021)
- Ts. Tzi, I.O. Trefilov. Mater. international. youth. sci. forum "Lomonosov-2021" / Ed. I.A. Aleshkovsky, A.V. Andriyanov, E.A. Antipov, E.I. Zimakova. [electronic resource]. M.: MAKS Press (2021)
- N.I. Sorokin, I.I. Buchinskaya, N.A. Ivanovskaya, A.S. Orekhov. Kristallografiya 67, 318 (2022). (in Russian)
- V.V. Boldyrev. Eksperimental'nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv (Experimental methods in mechanochemistry of solid inorganic substances). Nauka, Novosibirsk (1983). 65 p. (in Russian)
- J. Chable, A.G. Martin, A. Bourdin, M. Body, C. Legein, A. Jouauneaux, M.P. Crosnier-Lopez, C. Galven, B. Dieudonne, M. Leblanc, A. Demourgues, V. Maisonneuve. J. Alloys Comp. 692, 980 (2017). https://doi.org/10.1016/j.jallcom.2016.09.135
- A.K. Ivanov-Shitz, N.I. Sorokin, P.P. Fedorov, B.P. Sobolev. FTT 25, 1748 (1983). (in Russian)
- F. Fujara, D. Kruk, O. Lips, A.F. Privalov, V. Sinitsyn, S. Stork. Solid State Ionics 179, 2350 (2008)
- M. El Omari, J. Senegas, J.M. Reau. Solid State Ionics 107, 293 (1998)
- A.I. Livshits, V.M. Buznik, P.P. Fedorov, B.P. Sobolev. Neorgan. materialy 18, 135 (1982). (in Russian)
- N.I. Sorokin, M.V. Fominykh, E.A. Krivandina, Z.I. Zhmurova, B.P. Sobolev. Kristallografiya 41, 310 (1996). (in Russian)
- N.I. Sorokin, B.P. Sobolev. FTT, 50, 402 (2008). (in Russian)
- A. Roos, F.C.M. van de Pol, R. Keim, J. Schoonman. Solid State Ionics 13, 191 (1984)
- N.A. Ivanovskaya, D.N. Karimov, N.I. Sorokin, B.P. Sobolev. Tez. dokl. VIII International Conference "Crystallophysics and deformation behavior of promising materials" NUST MISiS, M. (2019). (in Russian). P. 103
- N. Melnikova, V. Bodnar, O. Glumov, I. Murin. Tez. dokl. XII international. confer. "Fundamental problems of solid state ionics". Izd. gruppa "Granitsa", Chernogolovka (2014). P. 175. (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.