Thermal profile analysis in simulation of the initial stage of synthesis of Cu-Au nanoparticles from the gas phase
Gafner Yu. Ya. 1, Ryzhkova D.A. 1
1Katanov Khakassian State University, Abakan, Russia

The production of particles from the gas phase is one of the main physical methods for the synthesis of nanostructured materials, the obvious advantages of which include good control of the target composition of the resulting nanomaterial. However, the determination of clear dependences between the initial parameters of experimental setups and the size of nanoparticles is not an easy task, requiring a detailed study of the processes of formation, growth, and agglomeration of nanoclusters. Another problem is that metal nanoparticles of identical chemical composition and size can be in different structural states or have different levels of defects. The processes underlying the formation of the structure of such nanoparticles are also not completely clear, especially at the very initial stage of synthesis from the moment of decomposition of precursors to the formation of primary stable nuclei. Therefore, in the presented work, the molecular dynamics method was used to simulate the process of synthesis of Cu-Au nanoclusters of various target compositions from the high-temperature gas phase. Based on the data obtained, conclusions were drawn about the main stages of the evolution of the model system. It is shown that the initial stage of synthesis consists of five different stages, gradually leading to the formation of primary spherical Cu-Au binary alloy nanoparticles with a clear extrusion of gold atoms to the surface. Keywords: nanotechnology, synthesis, nanopowders, computer simulation, tight binding, nanoparticles, copper, gold.
  1. S. Kato, J. Ohyama, M. Machida, A. Satsuma. Catal. Sci. Technol. 9, 2097 (2019)
  2. F.H.L. Starsich, A.M. Hirt, W.J. Stark, R.N. Grass. Nanotechnology 25, 50, 505602 (2014)
  3. L. Zhao, W. Lu, M. Ahmed, M.V. Zagidullin, V.N. Azyazov, A.N. Morozov, A.M. Mebel, R.I. Kaiser. Sci. Adv. 7, eabf0360 (2021)
  4. F.L. Deepak, R. Tenne. Cent. Eur. J. Chem. 6, 3, 373 (2008)
  5. O.F. Arbelaez-Prez, S. Domi nguez Cardozo, A.F. Orrego Romero, A.L. Villa Holgui n, F. Bustamante. Revista Facultad De Ingenieri a Universidad De Antioquia 95, 88 (2020)
  6. M. Snellman, N. Eom, M. Ek, M.E. Messing, K. Deppert. Nanoscale Adv. 3, 3041 (2021)
  7. C. Schulz, T. Dreier, M. Fikri, H. Wiggers. Proc. Combustion Institute 37, 1, 83 (2019)
  8. H. Prunier, J. Nelayah, Ch. Ricolleau, G. Wang, S. Nowak, A.-F. Lamic-Humblot, D. lloyeau. Phys. Chem. Chem. Phys. 17, 28339 (2015)
  9. Yu.Ya. Gafner, S.L. Gafner, D.A. Ryzkova, A.V. Nomoev. Beilstein J. Nanotechnology 12, 72 (2021)
  10. D.A. Ryzhkova, S.L. Gafner, Yu.Ya. Gafner. Pisma v ZhETF 113, 10, 668 (2021)
  11. Z. Li, X.Y.Ch. Liu, J. Wang, G. Li. Prog. Nat. Sci.: Mater. Int. 26, 477 (2016)
  12. P. Erhart, K. Albe. Adv. Eng. Mater. 7, 10, 937 (2005)
  13. N.E. Motl, E. Ewusi-Annan, I.T. Sines, L. Jensen, R.E. Schaak. J. Phys. Chem. C 14, 19263 (2010)
  14. R. He, Y.-C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, J.G. Hou. Nature Commun. 5, 4327 (2014)
  15. A. Henkel, A. Jakab, G. Brunklaus, C. Sonnichsen. J. Phys. Chem. C 113, 2200 (2009)
  16. J. Yang, L.L. Chng, X. Yang, X. Chen, J.Y. Ying. Chem. Commun. 50, 1141 (2014)
  17. Y. Liu, A.R.H. Walker. Angew. Chem. 122, 6933 (2010)
  18. D.T. Tran, I.P. Jones, J.A. Preece, R.L. Johnston, C.R. van den Brom. J. Nanopart. Res. 13, 4229 (2011)
  19. A. Wilson, R. Bernard, A. Vlad, Y. Borensztein, A. Coati, B. Croset, Y. Garreau, G. Prervot. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 075416 (2014)
  20. H. Yasuda, H. Mori. Z. Phys. D 37, 181 (2014)
  21. B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil Kuhn, W. Bouwen, P. Lievens. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 165406 (2001)
  22. S.L. Gafner, Y.Ya. Gafner. ZhETF 134, 4( 10), 831 (2008). (in Russian)
  23. F. Cleri, V. Rosato. Phys. Rev. B 48, 22 (1993)
  24. Ch.L. Bracey, P.R. Ellis, G.J. Hutchings. Chem. Soc. Rev. 38, 2231 (2009)
  25. Yu.Ya. Gafner, S.L. Gafner, I.V. Chepkasov. ZhETF 138, 4, 687 (2010). (in Russian)
  26. Yu.Ya. Gafner, S.L. Gafner, A.V. Nomoev. Solid State Phenomena 310, 96 (2020)
  27. Yu.Ya. Gafner, S.L. Gafner, J.V. Golovenko. Pisma o materialakh 10, 1, 33 (2020). (in Russian)
  28. Yu. Gafner, S. Gafner, L. Redel, I. Zamulin. J. Nanopart. Res. 20, 2, 51 (2018)
  29. O. Bauer, C.H. Schmitz, J. Ikonomov, M. Willenbockel, S. Soubatch, F.S. Tautz, M. Sokolowski. Phys. Rev. B 93, 235429 (2016)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245