Effect of Post Heat-treatment on Spectral Shifts Photopolymer Reflection Holograms and Its Use for Creating Color Holograms
Shelkovnikov V.V. 1, Derevyanko D. I. 1, Pen E. F. 2
1Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
2Institute of Automation and Electrometry, Siberian BranchRussian Academy of Sciences, Novosibirsk, Russia
Email: vice@nioch.nsc.ru, derevyanko@nioch.nsc.ru, pen@iae.nsk.su

The effect of post heat-treatment on the spectral properties of photopolymer reflection holograms scheme has been studied. It has been established that holograms with protective film retain a high diffraction efficiency of ~ 90% and do not have additional shrinkage during heat treatment for several days at a temperature of 80-90oC. The holograms without a protective film, removed after exposition, when heated in the temperature range of 40-110oC, show effective shrinkage up to 17% without compromising diffraction efficiency. Addiction the degree of shrinkage from the time of keeping the hologram at a given temperature is described by the function biexponential growth with saturation. The parameters of the approximating function are calculated. The characteristic shrinkage times in the temperature range of 40-110oC decrease from hours to minutes for fast components and from tens of days to tens of minutes for the slow component. Effect large shift of spectral response was used to create color-separated holograms. Color-separated holograms were obtained in two ways: two-layer version with shrinkage of one of the layers, single-layer version using photoresistive pattern and subsequent shrinkage. Keywords: reflection photopolymer holograms, thermal shrinkage, spectral shifts, color holograms
  1. J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, S. Yin. Opt. Express, 19 (3), 2216-2224 (2011). DOI: 10.1364/OE.19.002216
  2. J. Guo, M.R. Gleeson, J.T. Sheridan. Physics Research International, 2012, 2090-2220 (2012). DOI: 10.1155/2012/803439
  3. Golografiya. Nauka i praktika (in Russian)[Electronic resource] URL: http://www.holoexpo.ru
  4. M.S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, V. Toal. Applied Optics, 48 (14), 2642-2648 (2009). DOI: 10.1364/AO.48.002642
  5. A.K. Yetisen, I. Naydenova, F. da Cruz Vasconcellos, J. Blyth, C.R. Lowe. Chem. Rev., 114 (20), 10654-10696 (2014). DOI: 10.1021/cr500116a
  6. J. Marin-Saez, J. Atencia, D. Chemisana, M.-V. Collados. Optics Express, 24 (6), A720-A730 (2016). DOI: 10.1364/OE.24.00A720
  7. A. Zanutta, E. Orselli, T. Facke, A. Bianco. Optical Materials Express, 6 (1), 252-263 (2016). DOI: 10.1364/OME.6.000252
  8. N. Vorzobova, P. Sokolov. Polymers, 11 (12), 1-14 (2020). DOI: 10.3390/polym11122020
  9. K. Mitsube, Y. Nishimura, K. Nagaya, S. Takayama, Y. Tomita. Optical Materials Express, 4 (5), 982-996 (2014). DOI: 10.1364/OME.4.000982
  10. N. Ilie, E. Jelen, T. Luedemann, R. Hickel, Dental Materials J., 26 (2), 149-55 (2007). DOI: 10.4012/dmj.26.149
  11. D. Acrylics, J. Antonucci, S. Dickens. In Biomaterials science: an introduction to materials in medicine. Ed. by B.D. Ratner et al. 3rd ed. (Elsevier/AP, Oxford, 2013), p. 1489-1519. ISBN 978-0-12-374626-9
  12. S. Gallego, A. Marquez, C. Neipp, I. Pascual, A. Belendez. Materials, 5, 772-783 (2012) DOI: 10.3390/ma5050772
  13. L.C. Boaro, F. Goncalves, T.C. Guimaraes, J.L. Ferracane, C.S. Pfeifer, R.R. Braga. Dental Materials, 29 (4), 398-404 (2013). DOI: 10.1016/j.dental.2013.01.006
  14. B.A.M. Venhoven, A.J. de Gee, C.L. Davidson. Biomaterials, 14 (11), 871-875 (1993). DOI: 10.1016/0142-9612(93)90010-Y
  15. S.H. Stevenson, K.W. Steijn. Proc. SPIE, 2405, 88-97, (1995). DOI: 10.1117/12.205352
  16. E.F. Pen, I.A. Zarubin, V.V. Shelkovnikov, E.V. Vasil'ev. Optoelectronics, Instrumentation and Data Processing, 52 (1), 49-56 (2016). DOI: 10.3103/S8756699016010088
  17. C. Choi, E.V. Vasiliev, V.V. Shelkovnikov, V. Loskutov. Patent US9874811B2 Photopolymer composition for holographic recording (2016)
  18. D.I. Derevyanko, E.F. Pen, V.V. Shelkovnikov, Optoelectron. Instrument. Proc., (57), 584-591 (2021). DOI: 10.3103/S8756699021060042
  19. V.V. Shelkovnikov, E.F. Pen, V.I. Kovalevsky Opt. Mem. Neural Networks, 16 (2), 75-83 (2007). DOI: 10.3103/S1060992X07020038
  20. Yu.N. Denisyuk. Opt. i spektr., 15 (4), 522-532 (1963) (in Russian)
  21. G.M. Bartenev, S.YA. Frenkel'. Fizika polimerov. Ed. A.M. Yel'yashevich (Khimiya, L., 1990), 432 p (in Russian)
  22. V.V. Shelkovnikov, L.V. Ektova, N.A. Orlova, L.N. Ogneva, D.I. Derevyanko, I.K. Shundrina, G.E. Salnikov, L.V. Yans-hole. J. Mater. Sci., 50 (23), 7544-7556 (2015) DOI: 10.1007/s10853-015-9265-9
  23. N.G. Mironnikov, V.P. Korolkov, D.I. Derevyanko, V.V. Shelkovnikov. Optoelectronics, Instrumentation and Data Processing, 53 (5) 466-473 (2017). DOI: 10.3103/S8756699017050065

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru