Kinetics of adsorption and photocatalytic decomposition of a diazo dye by nanocomposite ZnO-MgO
Bulyga D. V.1, Evstropiev S. K.1,2,3
1 ITMO University, St. Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
Email: dmbulyga@yandex.ru, evstropiev@bk.ru

PDF
The synthesis of ZnO-MgO nanocomposite via modified Pechini method was performed. The crystalline structure and the morphology of nanocrystals were studied by X-ray diffraction analysis and scanning electron microscopy. The study on the kinetics of diazo dye adsorption and its photocatalytic decomposition on the surface of nanocomposite was performed. It was shown that the rate of adsorption process in aqueous solution is described by a kinetic equation of the first order. The application of the nanocomposite allows to significantly increase the efficiency of UV water treatment and its purification from the dye. However, a brief deviation of experimental data on the rate of photocatalytic degradation from the values of the widely used kinetic equation of the first order is observed. Keywords: photocatalysis, adsorption, ZnO-MgO, nanocomposite, kinetics.
  1. Organic Pollutants-Monitoring, Risk and Treatment, ed. by M. Nageeb (InTech, Rijeka, Croatia, 2013)
  2. X. Chen, Z. Wu, D. Liu, Z. Gao. Nanoscale Res. Lett., 12 (1), 1 (2017). DOI: 10.1186/s11671-017-1904-4
  3. S.-Y. Lee, S.-J. Park. J. Industrial and Engineering Chemistry, 19 (6), 1761 (2013). DOI: 10.1016/j.jiec.2013.07.012
  4. C. Karunakaran, V. Rajeswari, P. Gomathisankar. Solid State Sciences, 13 (5), 923 (2011). DOI: 10.1016/j.solidstatesciences.2011.02.016
  5. A. Sierra-Fernandez, S.C. De la Rosa-Garci a, L.S. Gomez-Villaba, S. Gomez-Cornelio, M.E. Rabanal, P. Quintana. ACS Appl. Mater. Interfaces, 9 (29), 24873 (2017). DOI: 10.1021/acsami.7b06130
  6. R. Saravanan, N. Karthikeyan, S. Govindan. Advanced Materials Research, 584, 381 (2012). DOI: 10.4028/www.scientific.net/AMR.584.381
  7. S. Yadav, A. Mittal, S. Sharma. Semiconductor Science and Technology, 35, 055008 (2020). DOI: 10.1088/1361-6641/ab7776
  8. M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu. Materials Lett., 59, 3641 (2005). DOI: 10.1016/j.matlet.2005.06.037
  9. L. Zheng, M. Liu, H. Zhang, Z. Zheng, Z. Wang, H. Cheng, P. Wang, Y. Liu, B. Huang, Nanomaterials, 11 (10), 2506 (2021). DOI: 10.3390/nano11102506
  10. P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev. Opt. Spectrosc., 125, 372 (2018)
  11. J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Zhang, Y. Dai. ACS Appl. Mater. Interfaces, 4, 4024 (2012)
  12. L.S. Liu, Z.X. Mei, A.H. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X.L. Du. Phys. Rev. B, 93, 235305 (2016). DOI: 10.1103/PhysRevB.93.235305
  13. A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev. Mater. Chem. Phys., 276, 125204 (2022). DOI: 10.1016/j.matchemphys.2021.125204
  14. V.E. Etacheri, R. Roshan, V. Kumar. ACS Appl. Mater. Interfaced, 4 (5), 2717 (2012). DOI: 10.1021/am300359h
  15. A.N.P. Madathil, K.A. Vanaja, M.K. Jayaraj. Intern. Society for Optics and Photonics, 6639, 66390J (2007). DOI: 10.1117/12.730364
  16. A.A. Shelemanov, S.K. Evstropiev, V.M. Kiselev, N.V. Nikonorov. Opt. Spectrosc., 129, 1300 (2021). DOI: 10.1134/S0030400X21090198
  17. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali. Procedia Chemistry, 19, 211 (2016). DOI: 10.1016/j.proche.2016.03.095
  18. A. Moussaoui, D.V. Bulyga, S.K. Evstropiev, A.I. Ignatiev, N.V. Nikonorov, Y.F. Podruhin, R.V. Sadovnichii. Ceramics International, 47 (24). 34307 (2021). DOI: 10.1016/j.ceramint.2021.08.341
  19. S.K. Evstropiev, V.N. Vasilyev, N.V. Nikonorov, E.V. Kolobkova, N.A. Volkova, I.A. Boltenkov. Chemical Engineering and Processing: Process Intensification, 134, 45 (2018). DOI: 10.1016/j.cep.2018.10.020
  20. I.S. Boltenkov, E.V. Kolobkova, S.K. Evstropiev. J. Photochem. and Photobiol. A: Chemistry, 367, 458 (2018). DOI: 10.106/j.photochem.2018.09.016
  21. S.K. Evstropiev, L.V. Lesnykh, A.V. Karavaeva, N.V. Nikonorov, K.V. Oreshkina, L.Yu. Mironov, S.Yu. Maslennikov, E.V. Kolobkova, I.V. Bagrov. Chemical Engineering and Processing: Process Intensification, 142, 107587 (2019). DOI: 10.1016/j.cep.2019.107587
  22. N.A. Volkova, S.K. Evstropiev, O.V. Istomina, E.V. Kolobkova. Opt. Spectrosc., 124 (4), 489 (2018)
  23. S. Noreen, U. Khalid, S.M. Ibrahim, T. Javed, A. Ghani, S. Naz, M. Iqbal. J. Materials Research and Technology, 9 (3), 5881 (2020). DOI: 10.1016/j.jmrt.2020.03.115
  24. A.S. Saratovskii, D.V. Bulyga, S.K. Evstrop'ev, T.V. Antropova. Physics and Chemistry, 48 (1), 10 (2022). DOI: 10.1134/S1087659622010126
  25. A.L. Patterson. Phys. Rev., 56 (10), 978 (1939)
  26. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai. Advanced Functional Materials, 20 (4), 561 (2010). DOI: 10.1002/adfm.200901884
  27. S. Vempati, J. Mitra, P. Dawson. Nanoscale Research Lett., 7 (1), 1(2012)
  28. D. Das, P. Mondal. RSC Adv., 4, 35735 (2014). DOI: 10.1039/C4RA06063F
  29. G. Liao, W. He, Y. He. Catalysts, 9, 502 (2019). DOI:10.3390/catal9060502
  30. J. Arana, J.L. Marti nez Nieto, J.A. Herrera Melian, J.M. Dona Rodri guez, O. Gonzalez Di az, J. Perez Pena, O. Bergasa, C. Alvarez, J. M?ndez. Chemosphere, 55 (6), 893 (2004). DOI: 10.1016/j.chemosphere.2003.11.060Get
  31. X. Chen, Z. Wu, D. Liu, Z. Gao. Nanoscale Res. Lett., 12,143(2017)
  32. E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, W.A. Jacoby, Environ. Sci. Technol., 36 (5), 3412 (2002). DOI: 10.1021/es011423
  33. I.S. Boltenkov, E.V. Kolobkova, S.K. Evstropiev. J. Photochem. and Photobiol. A: Chemistry, 367, 458 (2018). DOI: 10.106/j.photochem.2018.09.016
  34. I.A. Majeed, W.J. Murray, D.W. Newton, S. Othman, W.A. A-Turk, J. Pharm. Pharmacol., 39 (12), 1044 (1987). DOI: 10.1111/j.2042-7158.1987.tb03160.x
  35. V.V. Venkata, P.H. Sadashivaiah. Europ. J. Chem., 3 (2), 191 (2012). DOI: 10.5155/eurjchem.3.2.191-195.564
  36. M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor Advances in Materials Science and Engineering, 2015, 934587 (2015). DOI: 10.1155/2015/934587
  37. S.K. Evstropiev, L.V. Lesnykh, A.V. Karavaeva, N.V. Nikonorov, K.V. Oreshkina, L.Yu. Mironov, S.Yu. Maslennikov, E.V. Kolobkova, I.V. Bagrov. Chemical Engineering and Processing: Process Intensification, 142, 107587 (2019). DOI: https://doi.org/10.1016/j.cep.2019.107587
  38. Z. Cheng, S. Zhao, L. Han. Nanoscale, 10, 6892 (2018). DOI: 10.1039/c7nr09683f
  39. A.N. Terenin. Fotokhimiya krasiteley i rodstvennykh organicheskikh soedineniy (Nauka, M., 1967), p. 101. (in Russian)
  40. S. Lagergren. Kungliga Sevenska Vetenskapasakademiens Handlingar, 24, 1 (1898)
  41. S. Kaur, S. Rani, R.K. Mahajan. J. Chemistry, 2013, 628582 (2013). DOI: 10.1155/2013/628582
  42. M.J. Weber, J. Morris. ASCE J. Saint Engineering Division, 89, 31 (1963). DOI: 10.1061/JSEDAI.0000430
  43. Y.S. Ho, G. McKay. Process Saf. Environ. Protect, 76B., 183 (1998). DOI: 10.1205/095758298529326
  44. Y.S. Ho, G. McKay. Process Safety and Environmental Protection, 76, 332 (1998). DOI: 10.1205/095758298529696
  45. S. Lagergren. Kungliga Sevenska Vetenskapasakademiens Handlingar, 24, 39 (1898)
  46. O.O. Kryzhanovskaya, L.A. Sinyaeva, S.I. Karpov, V.F. Selemenev, E.V. Borodina, F. Ryossner. Sorbcionnye i hromatograficheskiye processy, 14 (5), 784 (2014). (in Russian)
  47. M. Irani, T. Mohammadi, S. Mohebbi. J. Mex. Chem. Soc., 60 (4), 218 (2016)
  48. Y.-S. Ho, J. Hazard. Mater., 136 (3), 681 (2006). DOI: 10.1016/j.jhazmat.2005.12.043
  49. Y. Kuang, X. Zhang, S. Zhou. Water, 12, 587 (2020). DOI: 10.3390/w12020587
  50. J. P. Simonin. Chem. Eng. J., 300, 254 (2016). DOI:10.1016/j.cej.2016.04.079
  51. J.C. Bullen, S. Sleesongsom, K. Gallagher, D.J. Weiss. Langmuir, 37 (10), 3189 (2021). DOI: 10.1021/acs.langmuir.1c00142
  52. V.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C: Photochem. Rev., 9, 1 (2008). DOI: 10.1016/j.jphotochemrev.2007.12.003
  53. I.K. Konstantinou, T. A. Albanis. Appl. Catalysis B: Environmental, 49 (1), 1 (2004). DOI: 10.1016/j.apcatb.2003.11.010
  54. V. Vimonses, M.N. Chong, B. Jin. Microporous and Mesoporous Materials, 132, 201 (2010). DOI: 10.1016/j.micromeso.2010.02.021
  55. W. Liu, T. He, U. Wang, G. Ning, Z. Xu, X. Chen, X. Hu, Y. Wu, Y. Zhao. Sci. Rep., 10, 11903 (2020). DOI: 10.1038/s4158-020-68517-x
  56. J. Chen, Y. Xiong, M. Duan, X. Li, J. Li, S. Fang, S. Qin, R. Zhang. Langmuir, 36 (2), 520 (2020). DOI: 10.1021/acs.langmuir.9b02879
  57. L.C. Abbott, S.N. Batchelor, J. Oakes, J.R. Lindsay Smith, J.N. Moore. J. Phys. Chem. B, 108, 13786 (2004)
  58. N.R. Senatorova, B.D. Ryzhikov. Vestnik Moskovskogo universiteta. Series 3. Fizika. Astronomiya, 29 (1), 43 (1988) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru