Laser-induced linear dichroism in planar self-organized silver nanostructures
Gladskikh I. A. 1, Dadadzhanov D. R. 1, Zakoldaev R. A. 1, Vartanyan T. A. 1
1ITMO University, St. Petersburg, Russia

PDF
A method for obtaining metallic plasmonic nanostructures with linear dichroism, based on the method of burning out constant spectral dips, is proposed. Isotropic granular silver films obtained by physical vapor deposition in vacuum were irradiated with linearly polarized laser radiation in the spectral region of the plasmon resonance of their constituent nanoparticles. As a result of irradiation, the silver nanostructures change their sizes and shapes, and the films acquire a pronounced linear dichroism. Both the magnitude and the spectrum of linear dichroism depend on the state of the isotropic film before irradiation, which can be changed by heat treatment. For the unannealed films the dichroism does not change the sign over the entire spectral range studied and corresponds to the expected increase in the depth of the spectral dip for the light polarized parallel to the laser radiation polarization plane. For the annealed films, which consist of more distinctly formed and better separated nanoparticles, the dichroism value is greater, and the spectrum turns out to be sign-changing. The appearance of linear dichroism after laser irradiation is due to the differences in the change in the shape and size of the initially anisotropic nanoparticles that make up an isotropic film as a whole, depending on their orientation relative to the polarization plane of the laser beam. Keywords: plasmon resonance, silver nanostructures, linear dichroism, laser radiation.
  1. A. Moores, F. Goettmann. New J. Chem., 30 (8), 1121 (2006). DOI: 10.1039/b604038c
  2. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. J. Phys. Chem. B, 107 (3), 668 (2003). DOI: 10.1021/jp026731y
  3. K.S. Lee, M.A. El-Sayed. J. Phys. Chem. B, 110 (39), 19220 (2006). DOI: 10.1021/jp026731y
  4. J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, J. Wang. Chem. Rev., 121 (21), 13342 (2021). DOI: 10.1021/acs.chemrev.1c00422
  5. G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats. Nature Nanotechnology, 6 (2), 107 (2011). DOI: 10.1038/nnano.2010.278
  6. K.V. Baryshnikova, M.I. Petrov, T.A. Vartanyan. Phys. Stat. Sol. (RRL) Rapid Research Lett., 9 (12), 711 (2015). DOI: 10.1002/pssr.201510330
  7. D.R. Dadadzhanov, T.A. Vartanyan, A. Karabchevsky. Nanomaterials, 10 (7), 1265 (2020). DOI: 10.3390/nano10071265
  8. M.R. Shcherbakov, B.B. Tsema, A.A.E. Ezhov, V.I. Panov, A.A.E. Fedyanin. JETP Lett., 93 (12), 720 (2011). DOI: 10.1134/S0021364011120149
  9. S. Requena, H. Doan, S. Raut, A. D'Achille, Z. Gryczynski, I. Gryczynski, Y.M. Strzhemechny. Nanotechnology, 27 (32), 325704 (2016). DOI: 10.1088/0957-4484/27/32/325704
  10. X.T. Kong, L.V. Besteiro, Z. Wang, A.O. Govorov. Advanced Materials, 32 (41), 1801790 (2020). DOI: 10.1002/adma.201801790
  11. Y. Chen, X. Yang, J. Gao. Light: Sci. \& Appl., 8 (1), 1 (2019). DOI: 10.1038/s41377-019-0156-8
  12. M.R. Shcherbakov, P.P. Vabishchevich, M.I. Dobynde, T.V. Dolgova, A.S. Sigov, C.M. Wang, A.A.E. Fedyanin. JETP Lett., 90 (6), 433 (2009). DOI: 10.1134/S0021364009180064
  13. M. Ren, E. Plum, J. Xu, N.I. Zheludev. Nature Commun., 3 (1), 1 (2012). DOI: 10.1038/ncomms1805
  14. T. Vartanyan, J. Bosbach, F. Stietz, F. Trager. Appl. Phys. B, 73 (4), 391 (2001). DOI: 10.1007/s003400100714
  15. K.L. Goeken, V. Subramaniam, R. Gill. Phys. Chem. Chem. Phys., 17 (1), 422 (2015). DOI: 10.1039/c4cp03739a
  16. B.N. Khlebtsov, N.G. Khlebtsov. J. Phys. Chem. C, 111 (31), 11516 (2007). DOI: 10.1021/jp072707e
  17. G.Q. Wallace, S.T. Read, D.M. McRae, S.M. Rosendahl, F. Lagugn-Labarthet. Advanced Optical Materials, 6 (6), 1701336 (2018). DOI: 10.1002/adom.201701336
  18. G. Gonzalez-Rubio, A. Guerrero-Marti nez, L.M. Liz-Marzan. Accounts of Chem. Research, 49 (4), 678 (2016). DOI: 10.1021/acs.accounts.6b00041
  19. L. Delfour, T.E. Itina. J. Phys. Chem. C, 119 (24), 13893 (2015). DOI: 10.1021/acs.jpcc.5b02084
  20. N.V. Tarasenko, A.V. Butsen, E.A. Nevar. Appl. Surface Science, 247 (1-4), 418 (2005). DOI: 10.1016/j.apsusc.2005.01.093
  21. N.A. Toropov, I.A. Gladskikh, P.S. Parfenov, T.A. Vartanyan. Optical and Quantum Electronics, 49 (4), 1 (2017). DOI: 10.1007/s11082-017-0996-5
  22. P.V. Gladskikh, I.A. Gladskikh, M.A. Baranov, T.A. Vartanyan. Opt. Spectrosc., 128 (6), 713 (2020). DOI: 10.1134/S0030400X20060065

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru