Low pressure DBD in He-Ne mixture. Spectroscopy of the Afterglow
Ivanov V. A. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: v.a.ivanov@spbu.ru

PDF
The paper considers the possibility of using a low-pressure dielectric barrier discharge (DBD) as a plasma source for the active medium of a He-Ne-laser. The results of a spectroscopic study of the decay stage of a DBD plasma of a cylindrical configuration with a pronounced inverse population of the upper level of the 2p55s configuration, which makes the line of 632.8 nm one of the brightest in the visible region of the spectrum, are presented. Based on the analysis of data on the populations of the excited levels of the neon atom and the metastable levels of helium 21S0 and 23S1, it is shown that in the early stage of the DBD afterglow at helium pressures of a fraction of a Torr, the distribution of populations over the 2p55s and 2p54d levels of the neon atom, which is characteristic of the excitation transfer mechanism, is realized. In the late afterglow with the departure of helium atoms He21S0, emission in the visible region of the spectrum is formed mainly by transitions from levels of the 2p53p, configuration, the population of which is associated with He(23S1) atoms. At this stage, the population of the 2p55s and 2p54d states by electron-ion recombination processes is ineffective and does not lead to the formation of population inversion. As an optimal solution in terms of the 632.8 nm line brightness in the afterglow, it is proposed to use a discharge with electrodes along the outer surface of a cylindrical discharge tube, initiated at frequencies that exclude the recombination stage of the afterglow. Keywords: elementary processes, barrier discharge, inverse population, afterglow, helium-neon plasma, excitation transfer
  1. R. Brandenburg. Plasma Sources Sci. Technol., 26 (5), 053001 (2017). https://doi.org/10.1088/1361-6595/aa6426
  2. U. Kogelschatz. Plasma Chem. Plasma Proc., 23 (1), 1 (2003)
  3. D. Gellert, U. Kogelschatz. Appl. Phys. B, 52 (1), 14 (1991)
  4. A. Javan, W.R. Jr. Bennett, D.R. Herriott. Phys. Rev. Letters, 6 (3), 106 (1961). DOI: 10.1103/PhysRevLett.6.106
  5. A.D. White, J.D. Rigden. Proceedings of the IRE, 50 (7), 1697 (1962). DOI: 10.1109/JRPROC.1962.288157
  6. L. Allen, D.G.C. Jones. Principles of Gas Lasers. London, Butterworths, 1967
  7. A.Z. Devdariany, A.L. Zagrebin, K. Blagoev. Annales De Physique, 17 (5), 365 (1992)
  8. V.A. Ivanov, A.S. Petrovskaja, Yu.E. Skoblo, Opt. Spectrosc., 117 (6), 896 (2014). DOI: 10.1134/S0030400X14120108
  9. V.A. Ivanov, A.S. Petrovskaja, Yu.E. Skoblo. Opt. Spectrosc., 123 (5), 692 (2017). DOI: 10.1134/S0030400X17110091
  10. V.A. Ivanov, Yu.E. Skoblo. Opt. Spectrosc., 127 (5), 820 (2019). DOI: 10.1134/S0030400X19110110
  11. V.A. Ivanov. Opt. Spectrosc., 126 (3), 167 (2019). DOI: 10.1134/S0030400X1903007X
  12. V.A. Ivanov. Plasma Sources Sci. Technol., 29 (4), 045022 (2020). https://doi.org/10.1088/1361-6595/ab7f4c
  13. V.A. Ivanov. J. Phys. B: At. Mol. Opt. Phys., 31, 1765 (1998). http://iopscience.iop.org/0953-4075/31/8/025
  14. E.E. Benton, E.E. Ferguson, F.A. Matson, W.W. Robertson. Phys. Rev., 128 (1), 206 (1962)
  15. O.P. Botchkova, Yu.A.Tolmahev, S.E. Frish. Opt. Spectrosc., (USSR) 23, 500 (1967)
  16. C.R. Jones, F.E. Niles, W.W. Robertson. J. Appl. Phys., 40, 3967 (1969)
  17. J.T. Massey, A.G. Shultz, B.F. Hochheimer, S.M. Cannon. J. Appl. Phys., 36, 658 (1965)
  18. V.P. Chebotaev, L.S. Vasilenko. Opt. Spectrosc., 20, 313 (1966)
  19. A.V. Phelps. Phys. Rev., 99, 1307 (1955)
  20. V.A. Ivanov, A.S. Prikhod'ko, Yu.E. Skoblo. Opt. Spectrosc., 70, 297 (1991)
  21. NIST Atomic Spectra Database Lines Form [Electronic source]. URL: https://physics.nist.gov/PhysRefData/ASD/ lines_form.html
  22. H.K. Haak, B. Wittig, F. Stuhl. Z. Naturforsch., 35A, 1342 (1980)
  23. V.A. Ivanov, A.S. Petrovskaja, Yu.E. Skoblo, JETP, 128, 767 (2019). DOI: 10.1134/S1063776119030051
  24. X.J. Liu, Y.Z. Qu, B.J. Xiao, C.H. Liu, Y. Zhou, J.G. Wang, R.J. Buenker. Phys. Rev. A 81 (2), 022717 (2010). DOI: 10.1103/PhysRevA.81.022717
  25. V.A. Ivanov, S.V. Gordeev, Yu.E. Skoblo. Opt. Spectrosc., 127 (3), 418 (2019). DOI: 10.1134/S0030400X19090133
  26. V.A. Ivanov, Yu.E. Skoblo. Opt. Spectrosc. 127 (6), 962 (2019). DOI: 10.1134/S0030400X19120087
  27. R.S. Mulliken. Phys. Rev., 136 (4A), 962 (1964). DOI: 10.1103/PhysRev.136.A962
  28. D.R. Bates. Comments Atom. Mol. Phys., 5, 89 (1976)
  29. A.V.Gurevich, L.P. Pitaevskii. Sov. Phys. JETP, 19 (4), 870 (1964)
  30. D.R. Bates, A.E. Kingston, R.W.P. McWhirter. Proc. Roy. Soc. (London), A267, 297 (1962). https://www.jstor.org/stable/2414257
  31. V.A. Ivanov. Sov. Phys. Usp., 35 (1), 17 (1992). DOI: 10.3367/UFNr.0162.199201b.0035. [V.A. Ivanov. Sov. Phys. Usp., (1), 17 (1992). DOI: 10.1070/PU1992v035n01ABEH002192]
  32. J. Stevefelt., J. Boulmer, J.-F. Delpech . Phys. Rev. A 12 (4), 1246 (1975). DOI: 10.1103/PhysRevA.12.1246

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru