Luminescence transformation mechanisms of indocyanine green dye in the presence of gold nanorods
Kondratenko T. S. 1, Chevychelova T. A. 1, Ovchinnikov O. V. 1, Smirnov M. S. 1,2, Perepelitsa A. S. 1
1Voronezh State University, Voronezh, Russia
2Voronezh State University of Engineering Technologies, Voronezh, Russia
Email: optichka@yandex.ru

PDF
Spectral-luminescent manifestations of the plasmon-exciton interaction between gold nanorods (Au NRs) with average length and diameter of 35± 5 nm and 9± 2 nm, passivated by molecules of cetyltrimethylammonium bromide (CTAB) and the indocyanine green dye (ICG) molecules are found. Extinguishing of the ICG luminescence near Au NRs and its buildup are detected at spacial separation of hybrid nanosystem components achieved by a spherical shell of SiO2 with an average thickness of 26±5 nm formed on the Au NRs. The amplification of the luminescence with growth of the dielectric shell is provided due to blocking of steric transformations of ICG polymethine chain when the interaction emerges between the dye and the silicious shell, and the Purcell effect. Keywords: luminescence, indocyanine green, gold nanorods, Purcell effect.
  1. M. Ogawa, N. Kosaka, P.L. Choyke, H. Kobayashi. Cancer Res., 69, 1268 (2007). DOI: 10.1158/0008-5472.can-08-3116
  2. P. Xue, R. Yang, L. Sun, Q. Li, L. Zhang, Zh. Xu, Y. Kang. Nano-Micro Lett., 10 (74), 1 (2018). DOI: 10.1007/s40820-018-0227-z
  3. A.N. Spitsyn, D.V. Utkin, O.S. Kuznetsov, P.S. Yerokhin, N.A. Osina, V.I. Kochubey. Opt. i spektr., 129 (1), 100 (2021) (in Russian). DOI: 10.21883/EOS.2022.06.54712.2938-21
  4. P. Das, A. Sedighi, U.J. Krull. Anal. Chim. Acta, 1041, 1 (2018). DOI: 10.1016/j.aca.2018.07.060
  5. H.-J. Lim, Ch.-H. Oh. Photodiagnosis. Photodyn. Ther., 8 (4), 337 (2011). DOI: 10.1016/j.pdpdt.2011.06.002
  6. C. Shirata, J. Kaneko, Y. Inagaki et. al. Sci. Rep., 7, 13958 (2017). DOI: 10.1038/s41598-017-14401-0
  7. S. Li, S. Yang, C. Liu, J. He, T. Li, C. Fu, X. Meng, H. Shao. Int. J. Nanomedicine, 16, 433 (2021). DOI: 10.2147/IJN.S275938
  8. A. Hackethal, M. Hirschburger, S. Eicker, et. al. Geburtshilfe und Frauenheilkunde, 78 (01), 54 (2018). DOI: 10.1055/s-0043-123937
  9. Y.-H. Han, Ranjith K. Kankala, Sh.-B. Wang, Ai-Zheng. Chen. Nanomaterials, 8 (6), 360 (2018). DOI: 10.3390/nano8060360
  10. G. Jo, B.Y. Lee, E.J. Kim, M.H. Park, H. Hyun. Biomedicines, 8 (11), 476 (2020). DOI: 10.3390/biomedicines8110476
  11. K. Gowsalya, V. Yasothamani, R. Vivek. Nanoscale Adv., 3, 3332 (2021). DOI: 10.1039/D1NA00059D
  12. W. Li, H. Zhang, X. Guo, et al. ACS Appl. Mater Interfaces, 9, 3354 (2017). DOI: 10.1021/acsami.6b13351
  13. R. Philip, A. Penzkofer, W. Baiumler, R.M. Szeimies, C. Abels. J. Photochem. Photobiol. A, 96 (1-3), 137 (1996). DOI: 10.1016/1010-6030(95)04292-X
  14. S. Reindl, A. Penzkofer, S.H. Gong, M. Landthaler, R. Szeimies, C. Abels, W. Bumler. J. Photochem. Photobiol. A, 105 (1), 65 (1997). DOI: 10.1016/s1010-6030(96)04584-4
  15. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, A. Liebert. J. Biomed. Opt., 16 (6), 067010 (2011). DOI: 10.1117/1.3593386
  16. N.Y. Hong, H.R. Kim, H.M. Lee, D.S. Sohn, K.G. Kim. Biomed. Opt. Express, 7 (5), 1637 (2016). DOI: 10.1364/BOE.7.001637
  17. T. Jin, S. Tsuboi, A. Komatsuzaki, Y. Imamura, Y. Muranaka, T. Sakata, H. Yasuda. Med. Chem. Commun., 7, 632 (2016). DOI: 10.1039/c5md00580a
  18. E.H. Lee, J.K. Kim, J.S. Lim, S.J. Lim. Colloids Surf. B, 136, 305 (2015). DOI: 10.1016/j.colsurfb.2015.09.025
  19. A.K. Kirchherr, A. Briel, K. Mder. Mol. Pharm., 6 (2), 480 (2009). DOI: 10.1021/mp8001649
  20. B. Jung, V.I. Vullev, B. Anvari. IEEE J. Sel. Top. Quantum. Electron., 20 (2), 7000409 (2014). DOI: 10.1109/jstqe.2013.2278674
  21. E.I. Alti nolu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H. Adair. ACS Nano., 2 (10), 2075(2008). DOI: 10.1021/nn800448r
  22. C.H. Lee, S.H. Cheng, Y.J. Wang, Y.C. Chen, N.T. Chen, et. al. Adv. Funct. Mater., 19 (2), 215 (2009). DOI: 10.1002/adfm.200800753
  23. R.H. Patel, A.S. Wadajkar, N.L. Patel, V.C. Kavuri, K.T. Nguyen, H. Liu. J. Biomed. Opt., 17 (4), 046003 (2012). DOI: 10.1117/1.jbo.17.4.046003
  24. F.P. Navarro, M. Berger, S. Guillermet, V. Josserand, L. Guyon, E. Neumann, F. Vinet, I. Texier. J. Biomed. Nanotechnol., 8, 730 (2012). DOI: 10.1166/jbn.2012.1430
  25. Z. Sheng, D. Hu, M. Zheng, P. Zhao, H. Liu, et. al. ACS Nano., 8, 12310 (2014). DOI: 10.1021/nn5062386
  26. Q. Chen, C. Liang, X. Wang, J. He, Y. Li, Z. Liu. Biomaterials, 35, 9355 (2014). DOI: 10.1016/j.biomaterials.2014.07.062
  27. P. Huang, Y. Gao, J. Lin, H. Hu, H. Liao, et. al. ACS Nano., 9, 9517 (2015). DOI: 10.1021/acsnano.5b03874
  28. T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.N. Latyshev.Opt. Spectr., 128 (8), 1278 (2020). DOI: 10.1134/S0030400X20080172
  29. T.S. Kondratenko,M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva. J. Nanopart. Res., 22 (9), 271 (2020). DOI: 10.1007/s11051-020-04981-w
  30. T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva. J. Fluoresc., 30 (3), 581 (2020). DOI: 10.1007/s10895-020-02521-2
  31. E.S. Tuchina, V.V. Tuchin, B.N. Khlebtsov, N.G. Khlebtsov. Quantum Elec., 41 (4), 354 (2011). DOI: 10.1070/QE2011v041n04ABEH014595
  32. R. Jijie, T. Dumych, L. Chengnang, J. Bouckaert, K. Turcheniuk, et. al. J. Mater. Chem. B, (2016). DOI: 10.1039/C5TB02697K
  33. J. Malicka, I. Gryczynski, C.D. Geddes, J.R. Lakowicz. J. Biomed. Opt., 8 (3), 472 (2003). DOI: 10.1117/1.1578643
  34. B. Zhang, L. Wei, Zh. Chu. J. Photochem. Photobiol. A: Chem., 375, 244 (2019). DOI: 10.1016/j.jphotochem.2019.02.028
  35. Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, et. al. Int. J. Nanomedicine, 4747 (2015). DOI: 10.2147/IJN.S82940
  36. F. Tam, G.P. Goodrich, Br.R. Johnson, N.J. Halas. Nano Lett., 7 (2) 496 (2007). DOI: 10.1021/nl062901x
  37. N. Toropov, A. Kamalieva, R.O. Volkov, E. Kolesova. Optics \& Laser Technology, 121, 105821 (2020). DOI: 10.1016/j.optlastec.2019.105821
  38. Y. Luo, J. Zhao. Nano Research., 12 (9), 2164 (2019). DOI: 10.1007/s12274-019-2390-z
  39. I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, A.S. Parshina. Kondensirovannye sredy i mezhfaznye granitsy, 23 (1), 25 (2021) (in Russian). DOI: 10.17308/kcmf.2021.23/3294 [I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, A.S. Parshina. Condensed Matter and Interphases, 23 (1), 25 (2021). DOI: 10.17308/kcmf.2021.23/3294]
  40. I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, M.S. Smirnov, A.N. Latyshev, O.V. Ovchinnikov, E.I. Enikeev, P.A. Golovinski, A.S. Selyukov. Bulletin of the Lebedev Physics Institute, 48 (3), 81 (2021). DOI: 10.3103/S1068335621030052
  41. V.V. Savchuk, R.V. Gamernyk, I.S. Virt, et. al. AIP Advances, 9, 045021 (2019). DOI: 10.1063/1.5090900
  42. A.L. Rodarte, A.R. Tao. J. Phys. Chem. C, 121 (6), 3496 (2017). DOI: 10.1021/acs.jpcc.6b08905
  43. X. Meng, A.V. Kildishev, K. Fujita, et. al. Nano Lett., 13 (9), 4106-4112 (2013). DOI: 10.1021/nl4015827
  44. N. Toropov, A. Kamalieva, A. Starovoytov, S. Zaki, T. Vartanyan. Adv. Photonics Res., 2, 2000083 (2021). DOI: 10.1002/adpr.202000083
  45. B.I. Shapiro, E.S. Kol'tsova, A.G. Vitukhnovskii, et. al. Nanotechnologies in Russia, 6, 456 (2011). DOI: 10.1134/S1995078011040112
  46. A.N. Kamalieva, N.A. Toropov, K.V. Bogdanov, T.A. Vartanyan. Opt. Spectrosc., 124 (3), 319 (2018). DOI: 10.1134/S1995078011040112
  47. E.M. Purcell. Phys. Rev., 69, 681 (1946). DOI: 10.1103/PhysRev.69.674.2
  48. J. Li, A. Krasavin, L. Webster, et al. Sci Rep., 6, 21349 (2016). DOI: 10.1038/srep21349
  49. E. Toth, D. Ungor, T. Novak, et. al. Nanomaterials, 10, 1048 (2020). DOI: 10.3390/nano10061048
  50. R. Becker, B. Liedberg, P.-O. Kall. J. Colloid. Interf. Sci., 343 (1) 25(2010). DOI: 10.1016/j.jcis.2009.10.075
  51. F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, et. al. EJNMMI Radiopharm. Chem., 2 (15),(2017). DOI: 0.1186/s41181-017-0034-8
  52. A.-K. Kirchherr, A. Briel, K. Mader. Mol. Pharm., 6 (2), 480 (2009). DOI: 10.1021/mp8001649
  53. M. Tornblom, U. Henriksson, M.J. Ginley. Phys. Chem. B, 101 (19) 3901 (1997). DOI: 10.1021/jp9708660
  54. S. Link, M.B. Mohamed, M.A. El-Sayed. Phys. Chem. B, 103 (16), 3073 (1999). DOI: 10.1021/jp990183f
  55. T.C. Barros, S.H. Toma, H.E. Toma, E.L. Bastos, M.S. Baptista. J. Phys. Org. Chem., 23, 893 (2010). DOI: 10.1002/poc.1692
  56. J.R. Lombardi, R.L. Birke. J. Phys. Chem. C, 112, 5605 (2008). DOI: 10.1021/jp800167v

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru