Dependence of photoluminescence of carbon dots with different surface functionalization on hydrogen factor of water
Khmeleva M. Yu. 1,2, Laptinskiy K. A. 1, Kasyanova P. S.2, Tomskaya A. E.3, Dolenko T. A. 2
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Department of Physics, Lomonosov Moscow State University, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: khmeliova.maria@gmail.com, laptinskiy@physics.msu.ru, pol.kasyanova@mail.ru, ae.tomskaya@s-vfu.ru, tdolenko@mail.ru

PDF
The pH dependences of the photoluminescence of carbon dots synthesized by the hydrothermal method with polyfunctional and monofunctional (carboxylated and hydroxylated) surfaces have been studied. As a result of the analysis of the obtained photoluminescence and absorption spectra of aqueous suspensions of all studied types of carbon dots at different pH values, a significant effect of the acidity of the environment of nanoparticles on their optical properties was found. It has been found that the greatest changes in the spectral characteristics of absorption and photoluminescence of carbon dots with COOH, OH, and NH2 surface groups appear in the pH ranges of 2-5 and 8-12. The obtained results are explained are explained by the processes of protonation/deprotonation of the surface groups of carbon dots. Keywords: carbon dots, surface functionalization, absorption spectroscopy, photoluminescence, hydrogen index, deprotonation.
  1. W. Su et al. Materials Chemistry Frontiers, 4 (3), 821 (2020). DOI: 10.1039/c9qm00658c
  2. N. Azam, M. Najabat Ali, T. Javaid Khan. Frontiers in Materials, 8, 700403 (2021). DOI: 10.3389/fmats.2021.700403
  3. O.E. Sarmanova et al. Nanomedicine: Nanotechnology, Biology and Medicine, 14 (4), 1371 (2018). DOI: 10.1016/j.na2018.03.009
  4. S.Sh. Rekhviashvili, D.S. Gayev, Ch. Margushev. Opt. i spektr., 129 (12), 1589 (2021) (in Russian). DOI: 10.21883/os.2021.12.51747.2560-21
  5. M.J. Molaei. RSC Advances, 9 (12), 6460 (2019). DOI: 10.1039/c8ra08088g
  6. K.A. Laptinskiy, S.A. Burikov, S.V. Patsaeva, I.I. Vlasov, O.A. Shenderova, T.A. Dolenko. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 229, 117879 (2020). DOI: 10.1016/j.saa.2019.117879
  7. T. Dolenko, S. Burikov, K. Laptinskiy, J. M. Rosenholm, O. Shenderova, I. Vlasov. Phys. Stat. Sol. (a), 212 (11), 2512 (2015). DOI: 10.1002/pssa.201532203
  8. K.A. Laptinskiy, S.A. Burikov, G.N. Chugreeva, O.E. Sarmanova, A.E. Tomskaya, T.A. Dolenko. Fullerenes, Nanotubes and Carbon Nanostructures, 29 (1), 67 (2020). DOI: 10.1080/1536383x.2020.1811236
  9. M. Huang et al. Nanomaterials, 10 (4), 604 (2020). DOI: 10.3390/nano10040604
  10. Y. Chen, X. Sun, W. Pan, G. Yu, J. Wang. Frontiers in Chemistry, 7, 911 (2020). DOI: 10.3389/fchem.2019.00911
  11. C. Liu, F. Zhang, J. Hu, W. Gao, M. Zhang. Frontiers in Chem., 8, 605028 (2021). DOI: 10.3389/fchem.2020.605028
  12. A. Pyne, S. Layek, A. Patra, N. Sarkar. J. Materials Chem. C, 7 (21), 6414 (2019). DOI: 10.1039/c9tc01629e
  13. W. Lv, X. Wang, J. Wu, H. Li, F. Li. Chinese Chem. Lett., 30 (9), 1635 (2019). DOI: 10.1016/j.cclet.2019.06.029
  14. S. Dutta Choudhury, J.M. Chethodil, P.M. Gharat, Praseetha P. K., H. Pal. J. Phys. Chem. Lett., 8 (7), 1389 (2017). DOI: 10.1021/acs.jpclett.7b00153
  15. J. Ren et al. Nanoscale, 11 (4), 2056 (2019). DOI: 10.1039/c8nr08595a
  16. O.E. Sarmanova et al. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 258, 119861 (2021). DOI: 10.1016/j.saa.2021.119861
  17. P.-J. Lu, World J. Gastroenterology, 16 (43), 5496 (2010). DOI: 10.3748/wjg.v16.i43.5496
  18. T. Takeshima, M. Adler, M. Nacchiero, J. Rudick, D.A. Dreiling. Am. J. Gastroenterol., 67 (1), 54 (1977)
  19. Bordwell pKa Table https://organicchemistrydata.org/ hansreich/resources/pka/\#pka_general [Accessed 10.10.2021]
  20. F. Menges. "Spectragryph --- optical spectroscopy software", Version 1.2.15, 2020, http://www.effemm2.de/spectragryph/
  21. I.Yu. Denisyuk, K.Yu. Logushkova, M.I. Fokina, M.V. Uspenskaya. Opt. i spektr., 126 (2), 177 (2019) (in Russian). DOI: 10.21883/os.2019.02.47200.300-18
  22. T. Petit, L. Puskar. Diamond and Related Materials, 89, 52 (2018). DOI: 10.1016/j.diamond.2018.08.005
  23. K.J. Mintz et al. Colloids and Surfaces B: Biointerfaces, 176, 488 (2019). DOI: 10.1016/j.colsurfb.2019.01.031
  24. B. De, N. Karak. RSC Advances, 3 (22), 8286 (2013). DOI: 10.1039/c3ra00088e
  25. A.N. Emam, S.A. Loutfy, A.A. Mostafa, H. Awad, M.B. Mohamed. RSC Advances, 7 (38), 23502 (2017). DOI: 10.1039/c7ra01423f
  26. E.A. Slyusareva, M.A. Gerasimov, A.G. Sizykh, L.M. Gornostaev. Russian Phys. J., 54 (4), 485 (2011). DOI: 10.1007/s11182-011-9643-y
  27. P. Zhou, Z. Tang, P. Li, J. Liu. J. Phys. Chem. Lett., 12 (28), 6478 (2021). DOI: 10.1021/acs.jpclett.1c01774
  28. S.A.K. Elroby, R.M. El-Shishtawy, M.S.I. Makki. Molecular Simulation, 37 (11), 940 (2011). DOI: 10.1080/08927022.2011.578137
  29. A.M. Vervald et al. J. Phys. Chem. C, 125 (33), 18247 (2021). DOI: 10.1021/acs.jpcc.1c03331

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru