Dependence of photoluminescence of carbon dots with different surface functionalization on hydrogen factor of water
Khmeleva M. Yu.
1,2, Laptinskiy K. A.
1, Kasyanova P. S.2, Tomskaya A. E.3, Dolenko T. A.
2
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Department of Physics, Lomonosov Moscow State University, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: khmeliova.maria@gmail.com, laptinskiy@physics.msu.ru, pol.kasyanova@mail.ru, ae.tomskaya@s-vfu.ru, tdolenko@mail.ru
The pH dependences of the photoluminescence of carbon dots synthesized by the hydrothermal method with polyfunctional and monofunctional (carboxylated and hydroxylated) surfaces have been studied. As a result of the analysis of the obtained photoluminescence and absorption spectra of aqueous suspensions of all studied types of carbon dots at different pH values, a significant effect of the acidity of the environment of nanoparticles on their optical properties was found. It has been found that the greatest changes in the spectral characteristics of absorption and photoluminescence of carbon dots with COOH, OH, and NH2 surface groups appear in the pH ranges of 2-5 and 8-12. The obtained results are explained are explained by the processes of protonation/deprotonation of the surface groups of carbon dots. Keywords: carbon dots, surface functionalization, absorption spectroscopy, photoluminescence, hydrogen index, deprotonation.
- W. Su et al. Materials Chemistry Frontiers, 4 (3), 821 (2020). DOI: 10.1039/c9qm00658c
- N. Azam, M. Najabat Ali, T. Javaid Khan. Frontiers in Materials, 8, 700403 (2021). DOI: 10.3389/fmats.2021.700403
- O.E. Sarmanova et al. Nanomedicine: Nanotechnology, Biology and Medicine, 14 (4), 1371 (2018). DOI: 10.1016/j.na2018.03.009
- S.Sh. Rekhviashvili, D.S. Gayev, Ch. Margushev. Opt. i spektr., 129 (12), 1589 (2021) (in Russian). DOI: 10.21883/os.2021.12.51747.2560-21
- M.J. Molaei. RSC Advances, 9 (12), 6460 (2019). DOI: 10.1039/c8ra08088g
- K.A. Laptinskiy, S.A. Burikov, S.V. Patsaeva, I.I. Vlasov, O.A. Shenderova, T.A. Dolenko. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 229, 117879 (2020). DOI: 10.1016/j.saa.2019.117879
- T. Dolenko, S. Burikov, K. Laptinskiy, J. M. Rosenholm, O. Shenderova, I. Vlasov. Phys. Stat. Sol. (a), 212 (11), 2512 (2015). DOI: 10.1002/pssa.201532203
- K.A. Laptinskiy, S.A. Burikov, G.N. Chugreeva, O.E. Sarmanova, A.E. Tomskaya, T.A. Dolenko. Fullerenes, Nanotubes and Carbon Nanostructures, 29 (1), 67 (2020). DOI: 10.1080/1536383x.2020.1811236
- M. Huang et al. Nanomaterials, 10 (4), 604 (2020). DOI: 10.3390/nano10040604
- Y. Chen, X. Sun, W. Pan, G. Yu, J. Wang. Frontiers in Chemistry, 7, 911 (2020). DOI: 10.3389/fchem.2019.00911
- C. Liu, F. Zhang, J. Hu, W. Gao, M. Zhang. Frontiers in Chem., 8, 605028 (2021). DOI: 10.3389/fchem.2020.605028
- A. Pyne, S. Layek, A. Patra, N. Sarkar. J. Materials Chem. C, 7 (21), 6414 (2019). DOI: 10.1039/c9tc01629e
- W. Lv, X. Wang, J. Wu, H. Li, F. Li. Chinese Chem. Lett., 30 (9), 1635 (2019). DOI: 10.1016/j.cclet.2019.06.029
- S. Dutta Choudhury, J.M. Chethodil, P.M. Gharat, Praseetha P. K., H. Pal. J. Phys. Chem. Lett., 8 (7), 1389 (2017). DOI: 10.1021/acs.jpclett.7b00153
- J. Ren et al. Nanoscale, 11 (4), 2056 (2019). DOI: 10.1039/c8nr08595a
- O.E. Sarmanova et al. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 258, 119861 (2021). DOI: 10.1016/j.saa.2021.119861
- P.-J. Lu, World J. Gastroenterology, 16 (43), 5496 (2010). DOI: 10.3748/wjg.v16.i43.5496
- T. Takeshima, M. Adler, M. Nacchiero, J. Rudick, D.A. Dreiling. Am. J. Gastroenterol., 67 (1), 54 (1977)
- Bordwell pKa Table https://organicchemistrydata.org/ hansreich/resources/pka/\#pka_general [Accessed 10.10.2021]
- F. Menges. "Spectragryph --- optical spectroscopy software", Version 1.2.15, 2020, http://www.effemm2.de/spectragryph/
- I.Yu. Denisyuk, K.Yu. Logushkova, M.I. Fokina, M.V. Uspenskaya. Opt. i spektr., 126 (2), 177 (2019) (in Russian). DOI: 10.21883/os.2019.02.47200.300-18
- T. Petit, L. Puskar. Diamond and Related Materials, 89, 52 (2018). DOI: 10.1016/j.diamond.2018.08.005
- K.J. Mintz et al. Colloids and Surfaces B: Biointerfaces, 176, 488 (2019). DOI: 10.1016/j.colsurfb.2019.01.031
- B. De, N. Karak. RSC Advances, 3 (22), 8286 (2013). DOI: 10.1039/c3ra00088e
- A.N. Emam, S.A. Loutfy, A.A. Mostafa, H. Awad, M.B. Mohamed. RSC Advances, 7 (38), 23502 (2017). DOI: 10.1039/c7ra01423f
- E.A. Slyusareva, M.A. Gerasimov, A.G. Sizykh, L.M. Gornostaev. Russian Phys. J., 54 (4), 485 (2011). DOI: 10.1007/s11182-011-9643-y
- P. Zhou, Z. Tang, P. Li, J. Liu. J. Phys. Chem. Lett., 12 (28), 6478 (2021). DOI: 10.1021/acs.jpclett.1c01774
- S.A.K. Elroby, R.M. El-Shishtawy, M.S.I. Makki. Molecular Simulation, 37 (11), 940 (2011). DOI: 10.1080/08927022.2011.578137
- A.M. Vervald et al. J. Phys. Chem. C, 125 (33), 18247 (2021). DOI: 10.1021/acs.jpcc.1c03331
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.