Physics of the Solid State
Volumes and Issues
Magnetocaloric effect in amorphous-crystalline microcircuits PrDyFeCoB
Dvoreckaia E. V.1, Sidorov V. L.1, Koplak O. V.1, Korolev D. V.2, Piskorsky V. P.2, Valeev R. A.2, Morgunov R. B.1,2,3
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
2All-Russia Institute of Aviation Materials (VIAM), Moscow, Russia
3Tambov State Technical University, Tambov, Russia
Email: morgunov2005@yandex.ru

PDF
In amorphous-crystalline PrDyFeCoB microconductors obtained by ultrafast melt cooling, a negative magnetocaloric effect was detected at 200-250 K (with heat release when the magnetic field is turned on), as well as a positive magnetocaloric effect in the temperature range of 300-340 K (with heat absorption when the magnetic field is turned on). It is established that there are no phase transitions of the first kind in the studied temperature range, which indicates that both of the detected effects are associated with a change in the magnetic part of the entropy. The transition at 200-250 K is due to the presence of metamagnetic states induced by a magnetic field in the spin-glass state of the amorphous part of the PrDyFeCoB alloy, and with their transition to the ferrimagnetic state. The transition at 300-340 K is spin-reorientation, and it occurs in crystalline inclusions identified in the amorphous matrix. Keywords: spin-reorientation transition, spin glass, magnetocaloric effect, entropy. Keywords: spin-reorientation transition, spin glass, magnetocaloric effect, entropy.
  1. A.K. Zvezdin, V.M. Matveev, A.A. Mukhin, A.I. Popov. Redkozemelnyie iony v magnitouporyadochennykh kristallakh. Nauka, M. (1985). 295 p. (in Russian)
  2. Ch. Hai-Ying, Z. Yan, Y. Yun-Bo, Ch. Xue-Gang, L. Shun-Quan, W. Chang-Sheng, Y. Ying-Chang, Y. Jin-Bo. Chin. Phys. Lett. 28, 7, 077501 (2011). https://doi.org/10.1088/0256-307X/28/7/077501
  3. R.B. Morgunov, O.V. Koplak, V.P. Piskorskii, D.V. Korolev, R.A. Valeev, A.D. Talantsev. J. Magn. Magn. Mater. 497, 166004 (2020). https://doi.org/10.1016/j.jmmm.2019.166004
  4. O.V. Koplak, E.V. Dvoretskaya, D.V. Korolev, R.A. Valeev, V.P. Piskorsky, A.S. Denisova, R.B. Morgunov. FTT 62, 1187, 2020(2020)
  5. O.V. Koplak, R.B. Morgunov, I.I. Khodos. Mater. Lett. 301, 130291 (2021). https://doi.org/10.1016/j.matlet.2021.130291
  6. O.V. Koplak, R.B. Morgunov. Mater. Sci. Eng. B. 263, 114845 (2021). https://doi.org/10.1016/j.mseb.2020.114845
  7. E.N. Kablov, O.G. Ospennikova, D.E. Kablov, V.P. Piskorskii, R.A. Valeev, D.V. Korolev, I.I. Rezchikova, E.I. Kunitsyna, A.D. Talantsev, A.I. Dmitriev, R.B. Morgunov. J. Exp. Theor. Phys. 121, 3, 429 (2015). https://doi.org/10.1134/S1063776115090071
  8. E.N. Kablov, O.G. Ospennikova, V.P. Piskorskii, D.V. Korolev, E.I. Kunitsyna, A.D. Talantsev, R.B. Morgunov. Phys. Solid State 58, 7, 1320 (2016). https://doi.org/10.1134/S1063783416070180
  9. E.N. Kablov, O.G. Ospennikova, E.I. Kunitsyna, V.P. Piskorskii, D.V. Korolev, R.B. Morgunov. Arch. Met. Mater. 62, 3, 1923 (2017). https://doi.org/10.1515/amm-2017-0290
  10. E.N. Kablov, O.G. Ospennikova, V.P. Piskorskii, D.V. Korolev, E.I. Kunitsina, A.I. Dmitriev, R.B. Morgunov. Low Temp. Phys. 42, 1, 45 (2016). https://doi.org/10.1063/1.4940226
  11. K. Imai, E. Masago, T. Saito, K. Shinagawa, T. Tsushima. J. Magn. Magn. Mater. 177--181, 99 (1998). https://doi.org/10.1016/S0304-8853(97)00936-0
  12. M. Stier, A. Neumann, A. Philippi-Kobs, H. P. Oepen, M. Thorwart. J. Magn. Magn. Mater. 447, 96 (2018). https://doi.org/10.1016/j.jmmm.2017.09.068
  13. Ling-Wei Li. Chin. Phys. B 25, 3, 037502 (2016). https://doi.org/10.1088/1674-1056/25/3/037502
  14. D. Nguyen,H. Nguyen,A. Nguyen,Y. Nguyen,T. Pham, V. Koledov,A. Kamantsev,A. Mashirov,T. Tran,H. Kieu, S. Yu. EPJ Web Conf.185, 05002 (2018). https://doi.org/ 10.1051/epjconf/201818505002
  15. B. Dahal,P. Kharel,T. Ott,W. Zhang,S. Valloppilly, R. Skomski,D. Sellmyer. AIP Adv.9, 035211 (2019); https://doi.org/10.1063/1.5080105
  16. F. Qin, H. Peng. Rare Earths: New Research. Chapter 8. Magnetocaloric Effect of Amorphous Materials Based on Heavy Rare Earth Elements. Nova Science, N.Y. (2020). 25 p
  17. P.J. von Ranke, N.A. de Oliveira, B.P. Alho, E.J.R. Plaza, V.S.R. de Sousa, L. Caron, M.S. Reis. J. Phys. Condens. Matter 21,056004 (2009). https://doi.org/10.1088/0953-8984/21/5/056004
  18. L. Li. Chin. Phys. B25, 037502 (2016). https://doi.org/10.1088/1674-1056/25/3/037502
  19. R. Nirmala, A.V. Morozkin, S.K. Malik. Pramana J. Phys. 84, 6, 977 (2015). https://doi.org/10.1007/s12043-015-1000-1
  20. D.L. Rocco,J.S. Amaral,J.V. Leitao,V.S. Amaral,M.S. Reis, S. Das,R.P. Fernandes,J.P. Araujo,A.M. Pereira, P.B. Tavares, N.V. Martins, A.A. Coelho. J. Phys. D.42,055002 (2009). https://doi.org/10.1088/0022-3727/42/5/055002
  21. K.A. Gschneidner, V.K. Pecharsky, A.O. Tsokol. Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  22. Aparna Sankar, J. AroutChelvane, A.V. Morozkin, A.K. Nigam, S. Quezado, S.K. Malik, R. Nirmala. AIP Adv. 8, 056208 (2018). https://doi.org/10.1063/1.5007696
  23. K. Mandal, A. Yan, P. Kerschl, A. Handstein, O. Gutfleisch, K-H. Muller. J. Phys. D. 37, 2628 (2004). https://doi.org/10.1088/0022-3727/37/19/002
  24. K. Zehani, R. Guetari, N. Mliki, L. Bessais. J. Phys. Procedia 75, 1435 (2015). https://doi.org/10.1016/j.phpro.2015.12.163
  25. P.L. Dong, L. Ma, J.C. Xiong, T.Y. Chen, S.F. Lu, L. Li. Mater. Res. Express 6, 126102 (2019). https://doi.org/10.1088/2053-1591/AB455C

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru