Semenov S. E.
1, Kapralova V. M.
1, Pakhotin V. A.
2, Sudar N. T.
11Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: moritohayama96@gmail.com, kapralova@spbstu.ru, v.pakhotin@mail.ioffe.ru, sudar53@mail.ru
We present the results of an experimental study of the pulse electrical strength of polyethylene terephthalate and polypropylene films when they are subjected to a single electric pulse. It has been found that the breakdown of these films is possible both at the front and at the plateau of the pulse, and the probability of breakdown at the front increases with pulse amplitude. We recorded a jump in the durability of the films at the transition from breakdown at the front to breakdown at the pulse plateau. It is shown that the processes that prepare the film electrical breakdown develop faster at the pulsefront than at the plateau. We discuss a possible physical mechanism to explain this effect. Keywords: polymers, polypropylene, polyethylene terephthalate, pulsed electrical breakdown, electroluminescence.
- L. Zhao, J. Su, C.L. Liu. AIP Advances 10, 3, 035206 (2020)
- M.P. Wilson, M.J. Given, I.V. Timoshkin, S.J. Mac Gregor, M.A. Sinclair, K.J. Thomas, J.M. Lehr. IEEE Trans. Plasma Sci. 38, 10, 2611 (2010)
- J. Artbauer. J. Phys. D 29, 2, 446 (1996)
- I. Kitani, K. Arii. Jpn. J. Appl. Phys. 22, 5R, 857 (1983)
- Z. Chen, S. Ji, W. Jia, J. Tan, F.Guo, J. Li. W. Chen. IEEE Trans. Plasma Sci. 46, 11, 4010 (2018)
- L.A. Dissado, J.C. Fothergill. Electrical Degradation and Breakdown in Polymers. The Institution of Engineeringand Technology, London (1992). 601 p
- K.C. Kao. J. Appl. Phys. 55, 3, 752 (1984)
- V.A. Zakrevskii, V.A. Pakhotin, N.T. Sudar. J. Appl. Phys. 115, 23, 234101 (2014)
- V.A. Zakrevsky, V.A. Pakhotin, N.T. Sudar. Technical Physics 89, 1, 120 (2019)
- N.R. Rajopadhye, S.V. Bhoraskar. J. Mater. Sci. Let. 5, 603 (1986)
- V.A. Zakrevsky, V.A. Pakhotin, N.T. Sudar. Technical Physics 87, 2, 249 (2017)
- V.A. Pakhotin, V.A. Zakrevsky, N.T. Sudar. Technical Physics 85, 8, 40 (2015)
- V.M. Rozhkov. Technical Physics 73, 1, 51 (2003)
- S. Boggs. IEEE Trans. Dielectr. Electr. Insul. 11, 1, 90 (2004)
- V.A. Zakrevsky, N.T. Sudar. Technical Physics 66, 4, 105 (1996)
- H. Kleemann, R. Gutierrez, F. Lindner, S. Avdoshenko, P.D. Manrique, B. Luussem, K. Leo. Nano L.ett. 10, 12, 4929 (2010)
- K. Kaneto, K. Yoshino, K.C. Kao, Y. Inuishi. Jpn. J. Appl. Phys. 13, 6, 1023 (1974)
- K. Kojima, Y. Takai, M. Ieda. Jpn. J. Appl. Phys. 21, 6R, 860 (1982)
- C. Laurent, F. Massines, C. Mayoux. IEEE Trans. Dielectr. Electr. Insul. 4, 5, 585 (1997)
- G. Teyssedre, G. Tardieu, D. Mary, C. Laurent. J. Phys. D 34, 14, 2220 (2001)
- V.A. Zakrevsky, V.A. Pakhotin, N.T. Sudar. FTT 61, 10, 1953 (2019) (in Russian)
- K. Hayashi, K. Yoshino, Y. Inuishi. Jpn. J. Appl. Phys. 14, 1, 39 (1975)
- H.S.W. Massey, E.H.S. Burhop, P.M. Morse. Phys. Today 6, 1, 15 (1953)
- V.A. Polyansky, I.L. Pankrat'eva. J. Electrostatics 70, 2, 201 (2012)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.