First-Principles Study of the Physical Properties of CuV2S4 under Pressure
Rahman M Atikur.1, Lubna J. F.1, Sarker S.1, Khatun R.1, Saha S. Kumur.1, Rahaman M. Z.2, Hossain K. M.3, Rasheduzzaman M.4, Hasan M. Z.4
1Department of Physics, Pabna University of Science and Technology, Pabna, Bangladesh
2School of Materials Science and Engineering, Faculty of Science, University of New South Wales, Sydney, Australia
3Department of Materials Science and Engineering, University of Rajshahi, Rajshah, Bangladesh
4Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Kumira, Chittagon, Bangladesh
Email: atik0707phy@gmail.com

PDF
The structural, electronic, mechanical, thermodynamic, and optical properties of CuV2S4 have been studied under pressure (0-50 GPa) by employing first-principles computation depending on the density functional theory. The optimized structural constraints are in good accord with the experimental results. By employing different pressure, the variation of single crystal elastic constant Cij as well as polycrystalline mechanical parameters are evaluated and discussed in detail. The increment of elastic constant with the increase in pressure guaranteed that CuV2S4 turn ought to be more resilient to shear distortion with pressure. The linear response of elastic moduli under pressure confirms that hardness of CuV2S4 rises with increasing pressure. The Pugh's ratio ensured the ductile nature of CuV2S4. Band structure and DOS calculations have been confirmed the electrically conductive nature of CuV2S4. The population analysis validates the presence of dominant covalent bonding. Optical properties, i.e., absorption, conductivity, reflectivity, and loss function are also explored with the variation of pressure. These optical functions demonstrate that the compound exhibits high reflectivity in the low-energy range, which assures the application of this compound as coating material. The thermodynamic properties are also investigated under pressure and discussed. Keywords: first-principles study, spinel-type compound CuV2S4, mechanical properties, electronic properties, optical and thermal properties.
  1. F.K. Lotgering. On the ferrimagnetism of some sulphides and oxides. PhD thesis, Utrecht University (1956)
  2. S. Nagata, T. Hagino, Y. Seki, and T. Bitoh. Physica B 194--196, 1077 (1994)
  3. P.G. Radaelli, Y. Horibe, M.J. Gutmann, H. Ishibashi, C.H. Chen, R.M. Ibberson, Y. Koyama, Y.-S. Hor, V. Kiryukhin, and S.-W. Cheong. Nature 416, 6877, 155 (2002)
  4. T. Hagino, Y. Seki, N. Wada, S. Tsuji, T. Shirane, K. Kumagai, and S. Nagata. Phys. Rev. B 51, 18, 12673 (1995)
  5. J. Sanghera, Shyam Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre. Opt. Mater. 33, 3, 511 (2011)
  6. L. Suchow and N.R. Stemple. J. Electrochem. Soc. 111, 2, 191 (1964)
  7. P.J. Deren, K. Maleszka-Baginska, P. Gluchowski, and M.A. Malecka. J. Alloys. Comp. 525, 39 (2012)
  8. A. Watras, P.J. Deren, R. Pazik, K. Maleska-Baginska. Opt. Mater. 34, 12, 2041 (2012)
  9. C. Alvarez-Lorenzo, L. Bromberg, and A. Concheiro. Photochem. Photobiology 85, 4, 848 (2009)
  10. S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, and S.-W. Cheong. Nature 418, 6900, 856 (2002)
  11. S.T. Bramwell and M.J.P. Gingras. Science 294, 5546, 1495 (2001)
  12. C. Urano, M. Nohara, S. Kondo, F. Sakai, H. Takagi, T. Shiraki, and T. Okubo. Phys. Rev. Lett. 85, 5, 1052 (2000)
  13. Y. Horibe, M. Shingu, K. Kurushima, H. Ishibashi, N. Ikeda, K. Kato, Y. Motome, N. Furukawa, S. Mori, and T. Katsufuji. Phys. Rev. Lett. 96, 8, 086406 (2006)
  14. R.M. Fleming, F.J. DiSalvo, R.J. Cava, and J.V. Waszczak. Phys. Rev. B 24, 5, 2850 (1981)
  15. F.J. DiSalvo and J.V. Waszczak. Phys. Rev. B 26, 5, 2501 (1982)
  16. N. LeNagard, A. Katty, G. Collin, O. Gorochov, and A. Willig. J. Solid State Chem. 27, 3, 267 (1979)
  17. T. Sekine, K. Uchinokura, H. Iimura, R. Yoshizaki, and E. Matsuura. SoIid State Commun. 51, 4, 187 (1984)
  18. Si. Ramakrishnan, A. Schonleber, C.B. Hubschle, C. Eisele, A.M. Schaller, T. Rekis, Nguyen Hai An Bui, F. Feulner, S. vanSmaalen, B. Bag, Sr. Ramakrishnan, M. Tolkiehn, and C. Paulmann. Phys. Rev. B 99, 19, 195140 (2019)
  19. Z.W. Lu, B.M. Klein, E.Z. Kurmaev, V.M. Cherkashenko, V.R. Galakhov, S.N. Shamin, Y.M. Yarmoshenko, V.A. Trofimova, S. Uhlenbrock, M. Neumann, T. Furubayashi, T. Hagino, and S. Nagata. Phys. Rev. B 53, 15, 9626 (1996)
  20. S. Kawaguchi, Y. Kubota, N. Tsuji, J. Kim, K. Kato, M. Takata, and H. Ishibashi. J. Phys.: Conf. Ser. 391, 1, 2095 (2012)
  21. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne. Z. Kristallographie-Crystalline Mater. 220, 5-6, 567 (2005)
  22. Accelrys, Materials Studio CASTEP manual Accelrys Accelrys (2010)
  23. P. Hohenberg and W. Kohn. Phys. Rev. 136, 3, B864 (1964)
  24. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke. Phys. Rev. Lett. 100, 13, 136406 (2008)
  25. D. Vanderbilt. Phys. Rev. B 41, 11, 7892 (1990)
  26. H.J. Monkhorst and J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976)
  27. T.H. Fischer and J. Almlof. J. Phys. Chem. 96, 24, 9768 (1992)
  28. J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke. Acta Materialia 60, 8, 3380 (2012)
  29. Y.D. Zhu, M.F. Yan, Y.X. Zhang, and C.S. Zhang. Comput. Mater. Sci. 123, C, 70 (2016)
  30. H.M. Tutuncu, E. Karaca, and G.P. Srivastava. Phil. Mag. 97, 29, 2669 (2017)
  31. M.M. Wu, L. Wen, B.-Y. Tang, L.-M. Peng, and W.-J. Ding. J. Alloys. Compounds 506, 1, 412 (2010)
  32. J.F. Nye. Properties Physiques des Materiaux. Dunod, Paris (1961)
  33. J. Wang, S. Yip, S.R. Phillpot, and D. Wolf. Phys. Rev. Lett. 71, 25, 4182 (1993)
  34. M. Born. Math. Proceed. Cambridge Phil. Soc. 36, 2, 160 (1940)
  35. M.I. Kholil and M.T. Hossen Bhuiyan. Res. Phys. 12, 73 (2019)
  36. R. Hill. Proceed. Phys. Soc. A 65, 5, 349 (1952)
  37. Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, and J. Meng. Phys. Rev. B 76, 5, 054115 (2007)
  38. S. Aydin and M. Simsek. J. Alloys. Compounds 509, 17, 5219 (2011)
  39. C. Zener. Elasticity and anelasticity of metals. University of Chicago Press (1948)
  40. S.F. Pugh. London, Edinburgh, and Dublin Phil. Mag. J. Sci. 45, 367, 823 (1954)
  41. J. Haines, J.M. Leger, and G. Bocquillon. Ann. Rev. Mater. Res. 31, 1, 1 (2001)
  42. T. Ye, Z. Dai, F. Mei, X. Zhang, Y. Zhou, J. Xu, W. Wu, X. Xiao, and C. Jiang. J. Phys. B 28, 43, 434002 (2016)
  43. H.M. Ledbetter. J. Phys. Chem. Ref. Data 6, 4, 1181 (1977)
  44. W.-C. Hu, Y. Liu, D.-J. Li, X.-Q. Zeng, and C.-S. Xu. Comp. Mater. Sci. 83, 27 (2014)
  45. R.S. Mulliken. J. Chem. Phys. 23, 10, 1833 (1955)
  46. M.D. Segall, R. Shah, C.J. Pickard, and M.C. Payne. Phys. Rev. B 54, 23, 16317 (1996)
  47. D. Jana, C.-L. Sun, L.-C. Chen, and K.-H. Chen. Prog. Mater. Sci. 58, 5, 565 (2013)
  48. F. Wooten. Optical Properties of Solids. Academic, N. Y. (1972). P. 803--804
  49. G. Wang, S. Wu, Z.H. Geng, S.Y. Wang, L.-Y. Chen, and Y. Jia. Opt. Commun. 283, 21, 4307 (2010)
  50. R. Saniz, L.-H. Ye, T. Shishidou, and A.J. Freeman. Phys. Rev. B 74, 1, 014209 (2006)
  51. M.L. Ali, M.Z. Rahaman, and M.A. Rahman. Int. J. Comput. Mater. Sci. Eng. 5, 04, 1650024 (2016)
  52. M. Fox. Amer. J. Phys. 70, 12, 1269 (2002)
  53. O.L. Anderson. J. Phys. Chem. Solids 24, 7, 909 (1963)
  54. J.C. Wei, H.C. Chen, W. Huang, and J. Long. Mater. Sci. Semicond. Proc. 27, 883 (2014)
  55. S. Zhou, J. Long, and W. Huang. Mater. Sci. Semicond. Proc.. 27, 605 (2014)
  56. J. Long, L. Yang, and W. Huang. Comput. Mater. Sci. 91, 315 (2014)
  57. W. Huang and H. Chen. Physica B 449, 133 (2014)
  58. M.J. Mehl, B.M. Klein, and D.A. Papaconstantopoulos. First-principles calculation of elastic properties. Naval Research Lab, Washington DC (1994)
  59. D.R. Clarke. Surface. Coatings Technol. 163, 67 (2003).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru