Influence of data pre-processing techniques for PLSR model to predict blood glucose by NIR spectroscopy
Suryakala S.Vasanthadev1, Prince Shanthi1
1Department of Electronics and Communication Engineering, SRM Institute of Science and technology, Kattankulathu, Tamil Nadu, India
Email: suryakas@srmist.edu.in
NIR diffuse reflectance spectroscopic spectra can be mathematically modelled to extract quantitative information by suitable multivariate calibration models. The analysis of spectral data becomes complex as the data is more prone to noise due to light scattering and baseline effects. These errors reduces the robustness and reliability of the developed calibration model. Hence data pre-processing becomes the most important aspect in data analysis. Different mathematical transformations are applied to remove the noise present in the data. This work focuses on the various empirical data pre-processing techniques like baseline correction, multiplicative scatter correction (MSC), robust MSC, extended multiplicative signal correction (EMSC), orthogonal signal correction (OSC) and (-log R) followed by standard normal variate (SNV) techniques for Partial Least Square Regression (PLSR) model in the prediction of blood glucose non-invasively. The performance of the PLSR model for the acquired (raw) spectral data and the same data subjected to different pre-processing techniques is analyzed. The model complexity and robustness is evaluated in terms of the number of latent variables (LVs) required to build the calibration model and obtained mean square prediction error after cross validation. This study utilizes the spectral data collected from 207 subjects from a diabetic center using Diffuse Reflectance Spectrometer (DRS). The analyzed results show that pre-processing based on (-log R) followed by SNV is found to perform well with reduced model complexity and minimum estimated mean square prediction error of 0.23 mg/dl among the other empirical pre-processing techniques. Keywords: multiplicative scatter correction (MSC), orthogonal signal correction (OSC), standard normal variate (SNV), Diffuse Reflectance Spectrometer (DRS).
- I.L. Jernelv, K. Milenko, S.S. Fuglerud, D.R. Hjelme, R. Ellingsen, A. Aksnes. Appl. Spectr. Rev., 54 (7), 543-572 (2019)
- C.F. So, K.S. Choi, T.K. Wong, J.W. Chung. Medical Devices: Evidence and Research, 5, 45-52 (2012)
- Lu Xu, Yan-Ping Zhou, Li-Juan Tang, Hai-Long Wu, Jian-Hui Jiang, Guo-Li Shen, Ru-Qin Yu. Anal. Chim. Acta, 616 (2), 138-143 (2008)
- O. CDevos, G. Downey, L. Duponchel. Food Chemistry, 148, 124-130 (2014)
- S. Verbovena, M. Hubertb, P. Goos. J. Chemometrics, 26 (6), 282-289 (2012)
- A. Rinnan, F. van den Berg, S.B. Engelsen. Trends in Anal. Chem., 28 (10), 1201-1222 (2009)
- M. Goodarzi, S. Sharma, H. Ramon, W. Saeys. TrAC Trends in Anal. Chem., 67, 147-158 (2015)
- R.J. McNichols, G.L. Cote, J. Biomed. Optics, 5 (1), 5-17 (2000)
- E. Hecht. Optics, 4th ed (Addison-Wesley, San Francisco, California, 2002)
- V.V. Tuchin. Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor \& Francis Group, London, 2009)
- S. Prince, S. Malarvizhi. IFMBE Proceedings, 25 (7), 240-243 (2009)
- https://www.americanpharmaceuticalreview.com/Featured-Articles/116330-Practical-Considerations-in-Data-Pre-treatment-for-NIR-and-Raman-Spectroscopy/
- M.R. Makarewicz, M. Mattu, T.B. Blank, S.L. Monfre, T.L. Ruchti, inventors. Sensys Medical Inc., assignee. United States patent US 6, 640, 117 (2003)
- M. Jackson, G. Wagnieres, H.H. Mantsch. Encyclopedia of Spectroscopy and Spectrophotometry (2017)
- S.V. Suryakala, S. Prince. Optical and Quantum Electronics, 51 (8), 271 (2019)
- J. Engel, J. Gerretzen, E. Szymanska, J.J. Jansen, G. Downey, L. Blanchet, M.C. Lutgarde Buydens. Trends in Anal. Chem., 50, 96-106 (2013)
- A. Candolfi, R. De Maesschalck, D. Jouan-Rimbaud, P.A. Hailey, J. Pharmaceutical and Biomedical Analysis, 21, 115-132 (1999)
- P.J. Rousseeuw, J. Am. Statistical Association, 79, 871-880 (1984)
- H. Martens, E. Stark, J. Pharmaceutical and Biomedical Analysis, 9(8), 625-635 (1991)
- Zeng-Ping Chen, Julian Morris, Elaine Martin. Analytical Chemistry, 78 (22), 7674-7681 (2006)
- C. Pizarro, I. Esteban-Diez, A.-J. Nistal, J.-M. Gonzalez-Saiz. Anal. Chim. Acta, 509, 217-227 (2004)
- K.M. Pierce, B. Kehimkar, L.C. Marney, J.C. Hoggard, R.E. Synovec, J. Chromatography A, 1255, 3-11 (2012)
- J. Engel, J. Gerretzen, E. Szymanska, J.J. Jansen, G. Downey, L. Blanchet, L.M.C. Buydens. Trends in Anal. Chem., 50, 96-106 (2013)
- N.M. Faber. J. Chemometrics, 13, 185-192, (1999)
- O.E. De Noord. Chemometrics and Intelligent Laboratory Systems, 23, 65-70 (1994)
- T. Naes, H. Martens. J. Chemometrics, 2, 155-167 (1988)
- O. Devos, L. Duponchel. Chemometrics and Intelligent Laboratory Systems, 107, 50-58 (2011)
- Y. Bi, Kailong Yuan, Weiqiang Xiao, Jizhong Wu, Chunyun Shi, Jun Xia, Guohai Chu, Guangxin Zhang, Guojun Zhou. Anal. Chim. Acta, 909, 30-40 (2016)
- S.N. Thennadil, E.B. Martin. J. Chemometrics, 19, 77-89 (2005)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.