Conduction band electronic states of ultrathin thiophene-phenylene co-oligomer and substituted biphenyl films on the surface of layer-by-layer grown ZnO
Komolov A.S. 1, Lazneva E.F. 1, Gerasimova N.B.1, Sobolev V.S.1, Zhizhin E.V.1, Pudikov D.A.1, Pshenichnyuk S.A. 2, Asfandiarov N.L. 2, Borshchev O.V. 3, Ponomarenko S.A. 3, Handke B. 4
1St. Petersburg State University, St. Petersburg, Russia
2Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
3Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia
4AGH University of Science and Technology, Faculty of Material Science and Ceramics, Krakow, Poland

PDF
The results of studying the electronic states of the conduction band and interface potential barrier during the formation of ultrathin films of thiophene-phenylene co-oligomer CH3-phenylene-thiophene-thiophene-phenylene -CH3(CH3-PTTP-CH3) on the surface of ZnO and films of biphenyl tetracarboxylic dianhydride (BPDA) on the ZnO surface are presented. A 100 nm thick ZnO layer was prepared by atomic layer deposition (ALD). Organic CH3-PTTP-CH3 films and BPDA films up to 8 nm thick were formed by thermal vacuum deposition. During film deposition, the electronic characteristics of the surface were studied using total current spectroscopy (TCS) in the energy range from 5 eV to 20 eV above EF. In this energy range, the structure of the maxima of the unoccupied electronic states of CH3-PTTP-CH3 and BPDA films was determined. As a result of the CH3-PTTP-CH3 film deposition, a decrease in the work function to 4.0 eV was found, compared with the value of the work function of 4.2 eV measured from the ALD ZnO-substrate. This corresponds to the transfer of a negative charge from the CH3-PTTP-CH3 film to the substrate. The charge transfer at the interface between the BPDA film and the ALD ZnO-substrate occurs in the opposite direction, since a 4.7 eV increase of the work function was registered during the formation of this interface. The CH3-PTTP-CH3 and BPDA films studied and the layer-by-layer grown ZnO film represent a continuous coating on sufficiently large surface areas of the order of 10 μmx10 μm. The roughness of the ZnO surface does not exceed 4 nm, and the surface roughness of CH3-PTTP-CH3 and BPDA films was 10-15 nm. Keywords: thiophene-phenylene co-oligomers, biphenyl tetracarboxylic dianhydride, ultrathin films, ZnO, atomic layer deposition method, electronic properties, low-energy electron spectroscopy, interface potential barrier.
  1. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.L. Bredas, S.R. Marder, A. Kahn, B. Kippelen. Science 336, 327 (2012)
  2. A.Y. Sosorev, M.K. Nuraliev, E.V. Feldman, D.R. Maslennikov, O.V. Borshchev, M.S. Skorotetcky, N.M. Surin, M.S. Kazantsev, S.A. Ponomarenko, D.Y. Paraschuk. Phys. Chem. Chem. Phys. 21, 11578 (2019)
  3. A.N. Alyoshin, I.P. Shcherbakov, I.N. Trapeznikova, V.N. Petrov. FTT 58, 1882 (2016) (in Russian)
  4. M. Krzywiecki, L. Grzadziel, P. Powroznik, M. Kwoka, J. Rechmann, A. Erbe. Phys. Chem. Chem. Phys. 20, 16092 (2018)
  5. E. Kumral, H.Y. Yenilmez, S. Albayrak, A.N. Sahin, A. Altindal, Z.A. Bayir.Dalton Transactions 49, 9385 (2020)
  6. T. Sengoku, T. Yamao, S. Hotta. J. Non-Cryst. Solids 358, 2525 (2012)
  7. F. Sasaki, Y. Kawaguchi, H. Mochizuki, S. Haraichi, T. Ishitsuka, T. Ootsuka, T. Tomie, S. Watanabe, Y. Shimoi, T. Yamao, S. Hotta. Mol. Cryst. Liq. Cryst. 620, 153 (2015)
  8. M.S. Kazantsev, V.G. Konstantinov, D.I. Dominskiy, V.V. Bruevich, V.A. Postnikov, Y.N. Luponosov, V.A. Tafeenko, N.M. Surin, S.A. Ponomarenko, D.Y. Paraschuk. Synt. Met. 232, 60 (2017)
  9. L.G. Kudryashova, M.S. Kazantsev, V.A. Postnikov, V.V. Bruevich, Y.N. Luponosov, N.M. Surin, O.V. Borshchev, S.A. Ponomarenko, M.S. Pshenichnikov, D.Y. Paraschuk. ACS Appl. Mater. Interfaces 8, 10088 (2016)
  10. Y. Kawaguchi, F. Sasaki, H. Mochizuki, T. Ishitsuka, T. Tomie, T. Ootsuka, S. Watanabe, Y. Shimoi, T. Yamao, S. Hotta. J. Appl. Phys. 113, 083710 (2013)
  11. A.N. Aleshin, I.P. Shcherbakov, D.A. Kirilenko, L.B. Matyushkin, V.A. Moshnikov, FTT 61, 388 (2019). (in Russian)
  12. M. Goumri, R. Hatel, B. Ratier, M. Baitoul. Appl. Phys. A 126, 647 (2020)
  13. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, G.D. Zashikhin, S.A. Pshenichnyuk. FTT 58, 367 (2016). (in Russian)
  14. D. Ozdal, N.P. Aydinlik, J.B. Bodapati, H. Icil. Photochem. Photobiol. Sci. 16, 262 (2017)
  15. R. Tonner, P. Rosenowa, P. Jakob. Phys. Chem. Chem. Phys. 18, 6316 (2016)
  16. F. Wurthner, C. Thalacker, S. Diele, C. Tschierske. Chem. Eur. J. 7, 2245 (2001)
  17. A.S. Komolov, P. J. Moeller, Y. G. Aliaev, E.F. Lazneva, S.A. Akhremchik, F.S. Kamounah, J. Mortenson, K. Schaumburg. J. Mol. Struct. 744/747, 145 (2005)
  18. M. Krzywiecki, L. Grzadziel, A. Sarfraz, D. Iqbal, A. Szwajca, A. Erbe. Phys. Chem. Chem. Phys. 17, 10004 (2015)
  19. A.S. Komolov, P.J. Moeller. Appl. Surf. Sci. 212, 497 (2003)
  20. I.A. Averin, I.A. Pronin, N.D. Yakusheva, A.A. Karmanov, E.A. Alimova, S.E. Igoshina, V.A. Moshnikov, E.I. Terukov. ZhTF, 89, 1917 (2019). (in Russian)
  21. H. Frankenstein, C.Z. Leng, M.D. Losego, G.L. Frey. Organic Electron. 64, 37 (2019)
  22. T.N. Walter, S. Lee, X.Zhang, M. Chubarov, J.M.Redwing, T.N. Jackson, S.E. Mohney. Appl. Surf. Sci. 480, 43 (2019)
  23. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, V.S. Sobolev, E.V. Zhizhin, S.A. Pshenichnyuk, N.L. Asfandiarov, B. Handke. FTT 63, 1177 (2021). (in Russian)
  24. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, G.D. Zashikhin, S.A. Pshenichnyuk, O.V. Borshchev, S.A. Ponomarenko, B. Handke. FTT 60, 1012 (2018). (in Russian)
  25. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu. A. Panina, V.S. Sobolev, A.V. Koroleva, S.A. Pshenichnyuk, N.L. Asfandiarov, A. Modelli, B. Handke, O.V. Borshchev, S.A. Ponomarenko. J. Electron. Spectr. Rel. Phenom. 235, 40 (2019)
  26. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, V.S. Sobolev, S.A. Pshenichnyuk, O.V. Borshchev, S.A.Ponomarenko, B. Handke. FTT 62, 1741 (2020). (in Russian)
  27. A.S. Komolov, E.F. Lazneva, S.N. Akhremtchik. App. Surf. Sci. 256, 2419 (2010)
  28. A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, A.V. Baramygin, V.S. Sobolev, S.A. Pshenichnyuk, N.L. Asfandiarov, V.A. Kraikin, B. Handke. FTT 62, 1116 (2020). (in Russian)
  29. Y. Tong, F. Nicolas, S. Kubsky, H. Oughaddou, F. Sirotti, V. Esaulov, A. Bendounan. J. Phys. Chem. C 121, 9, 5050 (2017)
  30. S.A. Pshenichnyuk, A. Modelli, N.L. Asfandiarov, E.F. Lazneva, A.S. Komolov. J. Chem. Phys. 151, 214309 (2019)
  31. S.A. Kukushkin, A.V. Osipov, A.I. Romanychev. FTT 58, 1398 (2016). (in Russian)
  32. P.J. Moeller, S.A. Komolov, E.F. Lazneva, A.S. Komolov. Appl. Surf. Sci. 175- 176, 663 (2001)
  33. A.S. Komolov, P. J. Moeller, E.F. Lazneva. J. Electron. Spec. Rel. Phen., 131- 132, 67 (2003)
  34. J. Hwang, A. Wan, A. Kahn. Mater. Sci. Eng. R 64, 1 (2009)
  35. I. Bartos. Progr. Surf. Sci. 59, 197 (1998)
  36. S.A. Komolov, E.F. Lazneva, A.S. Komolov. Pis'ma v ZhTF 29, 13 (2003). (in Russian).
  37. A. Komolov, P.J. Moeller, J. Mortensen, S. Komolov, E. Lazneva. Surf. Sci. 586, 129 (2005)
  38. I.G. Hill, J. Schwartz, A. Kahn. Organic Electron. 1, 5 (2000)
  39. A.L. Shu, W.E. McClain, J. Schwartz, A. Kahn. Organic Electron. 15, 2360 (2014)
  40. S. Braun, W. Salaneck, M. Fahlman. Adv. Mater. 21, 1450 (2009)
  41. A.S. Komolov, S.N. Akhremtchik, E.F. Lazneva. Spectrochim. Acta A 798, 708 (2011)
  42. M. Krzywiecki, L. Grzadziel, P. Powroznik, M. Kwoka, J. Rechmann, A. Erbe. Phys. Chem. Chem. Phys. 20, 16092 (2018).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru