Raman and Photoluminescence Spectra for Ho, Er, Tm, Yb, Lu, and Y doped Hafnia
Shkerin S.N.1, Meshcherskikh A.N.1, Yaroslavtseva T.V.2, Abdurakhimova R.K.1
1Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
Email: shkerin@mail.ru

PDF
Previously obtained and certified HfO2 based samples were investigated by two Raman spectrometers with different wave source. Stokes reflexes have to be independent of the laser frequency so they were distinguished by comparison of different laser results. For the first time the dependence of Stokes lines frequencies on the cation radii of dopants was observed. Frequencies monotonically varied with the ratio of cation-dopant to hafnium radii changes. All non-Stokes reflexes are considered as photoluminescence. They were compared with both the literature data on luminescence of REM cations and the experimental results on zirconia-based materials intrinsic photoluminescence, which was a property of its point defects. Intrinsic photoluminescence is observed for the first time on hafnia-based materials. Keywords: Raman spectroscopy, luminescence, hafnia with cubic structure, REE.
  1. V.N. Chebotin, M.V. Perfilyev. Elektrokhimiya tverdykh elektrolitov. Khimiya, M. (1978). 312 p. (in Russian)
  2. M.V. Perfilyev, A.K. Demin, B.L. Kuzin, A.S. Lipilin. Vysokotemperaturny elektroliz gazov. / Edited by S.V. Karpachev. Nauka, M. (1988). 232 p. (in Russian)
  3. V.N. Chebotin. Khimicheskaya diffuziya v tverdykh telakh. Nauka, M. (1989). 208 p. (in Russian)
  4. H.L. Tuller, M. Balkanski, T. Takahashi. Solid State Ionics. Elsevier, Amsterdam (1992). 345 p
  5. A.K. Ivanov-Shitz, I.L. Murin. Ionika tverdogo tela. SPbSU, SPb (2000). T. 1. 617 p. (in Russian)
  6. S.C. Singhal, K. Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Amsterdam (2003). 429 p
  7. J. Maier. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids. Wiley, N. Y. (2004). 539 p
  8. A.K. Ivanov-Shitz, I.L. Murin. Ionika tverdogo tela. SPbSU, SPb (2000). T. 2. 1000 p. (in Russian)
  9. F. Ramadhani, M.A. Hussain, H. Mokhlis, S. Hajimolana. Renew. Sustain. Energy Rev. 76, (2017). P. 460. DOI: 10.1016/j.rser.2017.03.052
  10. T. Liu, X. Zhang, X. Wang, J. Yu, L. Li. Ionics 22, 12, 2249 (2016). DOI: 10.1007/s11581-016-1880-1
  11. S.N. Shkerin. Izv. AN. Ser. fiz. 66, 6, 890 (2002) (in Russian)
  12. S. Shkerin. The YSZ Electrolyte Surface Layer: Existence, Properties and Effect on Electrode Characteristics. In: N.M. Sammes, A. Smirnova, O. Vasylyev. Fuel Cell Technologies: State and Perspectives. Springer, Dordrecht (2005). P. 301-306. DOI: 10.1007/1-4020-3498-9_34
  13. V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. J. Nanosci. Nanotechnol. 10, 11, 7411 (2010). DOI: 10.1166/jnn.2010.2836
  14. V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. Dokl. RAN 433, 2, 206 (2010). (in Russian)
  15. A.N. Vlasov. Elektrokhimiya 25, 5, 699 (1989) (in Russian)
  16. A.N. Vlasov. Elektrokhimiya 25, 10, 1313 (1989) (in Russian)
  17. A.N. Vlasov, I.G. Shulik. Elektrokhimiya 26, 7, 909 (1990). (in Russian)
  18. A.N. Vlasov. Elektrokhimiya 19, 2, 1624 (1983)
  19. A.N. Vlasov, M.V. Inozemtsev. Elektrokhimiya 21, 6, 764 (1985)
  20. A.N. Vlasov, M.V. Perfiliev. Solid State Ionics 25, 4, 245 (1987)
  21. A.N. Vlasov. Elektrokhimiya 27, 11, 1479 (1991)
  22. M.A. Borik, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, V.A. Myzina, P.A. Popov, F.O. Milovich, N.Yu. Tabachkova. FTT 61, 12, 2390 (2019). (in Russian). DOI: 10.21883/FTT.2019.12.48560.08ks
  23. D.A. Agarkov, M.A. Borik, G.M. Korableva, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, F.O. Milovich, V.A. Myzina, P.A. Popov, P.A. Ryabochkina, N.Y. Tabachkova. FTT 62, 12, 2093 (2020) (in Russian). DOI: 10.21883/FTT.2020.12.50213.160, translated version: 10.1134/S1063783420120021
  24. Z. Wang, Z.Q. Chen, J. Zhu, S.J. Wang, X. Guo. Radiation Phys. Chem. 58, 5-6, 697 (2000). DOI: 10.1016/S0969-806X(00)00242-5
  25. V.G. Keramidas, W.B. White. J. Chem. Phys. 59, 3, 1561 (1973). DOI: 10.1063/1.1680227
  26. E.E. Lomonova, D.A. Agarkov, M.A. Borik, G.M. Yeliseeva, A.V. Kulebyakin, I.E. Kuritsyna, F.O. Milovich, V.A. Myzina, V.V. Osiko, A.S. Chislov, N.Yu. Tabachkova. Elektrokhimiya 56, 2, 127 (2020). (in Russian). DOI: 10.31857/S0424857020020085
  27. D.A. Long. The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley \& Sons Ltd, New Jersey (2002). 597 p. DOI: 10.1002/jrs.987
  28. S.N. Shkerin, E.S. Yulyanova, E.G. Vovkotrub. Neorgan. materialy 57, 11, 1213 (2021). DOI: 10.31857/S0002337X21100134
  29. S.H. Batygov, V.I. Vashchenko, S.V. Kudryavtsev, I.M. Klimkovich, E.E. Lomonova. FTT 30, 3, 661 (1988). (in Russian)
  30. N.G. Petrik, D.P. Taylor, T.M. Orlando. J. Appl. Phys. 85, 9, 6770 (1999). DOI: 10.1063/1.370192
  31. J.-M. Costantini, F. Beuneu, M. Fasoli, A. Galli, A. Vedda, M. Martini. J. Phys.: Condens. Matter. 23, 11, 115901 (2011). DOI: 10.1088/0953-8984/23/11/115901
  32. W.S.C. de Sousa, D.M.A. Melo, J.E.C. da Silva, R.S. Nasar, M.C. Nasar, J.A. Varela. Cer\^amica 53, 325, 99 (2007). DOI: 10.1590/S0366-69132007000100015
  33. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, J. Grabis, W. Lojkowski. J. Luminescence 131, 10, 2058 (2011). DOI: 10.1016/j.jlumin.2011.05.018
  34. L. Dunyushkina, A. Pavlovich, A. Khaliullina. Mater. 14, 18, 5463 (2021). DOI: 10.3390/ma14185463
  35. S.N. Shkerin, E.S. Yulyanova, E.G. Vovkotrub. FTT 64, 4, 467 (2022). DOI: 10.21883/FTT.2022.04.52187.252
  36. S. Stepanov, O. Khasanov, E. Dvilis, V. Paygin, D. Valiev, M. Ferrari. Ceram. Int. 47, 5, 6608 (2021). DOI: 10.1016/j.ceramint.2020.10.250
  37. R. Khabibrakhmanov, A. Shurukhina, A. Rudakova, D. Barinov, V. Ryabchuk, A. Emeline, G. Kataeva, N. Serpone. Chem. Phys. Lett. 742, 137136 (2020). DOI: 10.1016/j.cplett.2020.137136
  38. N.C. Horti, M.D. Kamatagi, S.K. Nataraj, M.S. Sannaikar, S.R. Inamdar. AIP Conf. Proceed. 2274, 1, 020002 (2020). DOI: 10.1063/5.0022460
  39. X. Tan, S. Xu, L. Zhang, F. Li, B.A. Goodma, W. Deng. Appl. Phys. A 124, 12, 853 (2018). DOI: 10.1007/s00339-018-2284-z
  40. K. Smits, D. Olsteins, A. Zolotarjovs, K. Laganovska, D. Millers, R. Ignatans, J. Grabis. Sci. Rep. 7, 44453 (2017). DOI: 10.1038/srep44453
  41. K. Smits, L. Grigorjeva, D. Millers, K. Kundzins, R. Ignatans, J. Grabis, C. Monty. Opt. Mater. 37, 251 (2014). DOI: 10.1016/j.optmat.2014.06.003
  42. K. Smits, D. Jankovic, A. Sarakovskis, D. Millers. Opt. Mater. 35, 3, 462 (2013). DOI: 10.1016/j.optmat.2012.09.038
  43. L.A. Diaz-Torres, O. Meza, D. Solis, P. Salas, E. De la Rosa. Opt. Lasers Eng. 49, 6, 703 (2011). DOI: 10.1016/j.optlaseng.2010.12.010
  44. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, W. Lojkowski. Opt. Mater. 32, 8, 827 (2010). DOI: 10.1016/j.optmat.2010.03.002
  45. K. Utt, S. Lange, M. Jarvekulg, H. Mandar, P. Kanarjov, I. Sildos. Opt. Mater. 32, 8, 823 (2010). DOI: 10.1016/j.optmat.2010.02.016
  46. L.A. Diaz-Torres, E. De la Rosa-Cruz, P. Salas, C. Angeles-Chavez. J. Phys. D 37, 18, 2489 (2004). DOI: 10.1088/0022-3727/37/18/004
  47. V.B. Glushakova, M.V. Kravchinskaya, A.K. Kuznetsov, P.A. Tikhonov. Dioksid gafniya i ego soedineniya s oksidami redkozemelnykh elementov. Nauka, L. (1984). 174 p. (in Russian)
  48. S.V. Zhidovinova, A.G. Kotlyar, V.N. Strekalovsky, S.F. Palguev. Tr. In-ta of Electrochemistry of the UNC of the USSR Academy of Sciences 18, 148 (1972)
  49. M.F. Trubelja, V.S. Stubican. Solid State Ionics 49, 89 (1991)
  50. A.N. Meshcherskikh, A.A. Kolchugin, B.D. Antonov, L.A. Dunyushkina. FTT 62, 1, 145 (2020). (in Russian). DOI: 10.21883/FTT.2020.01.48752.557 [A.N. Meshcherskikh translated version: DOI:10.1134/S1063783420010229]
  51. S.N. Shkerin, M.V. Perfilyev. Elektrokhimiya 26, 11, 1461 (1990)
  52. M. Alotaibi, L. Li, A.R. West. Phys. Chem. Chem. Phys. 23, 45, 25951 (2021). DOI: 10.1039/d1cp04642j
  53. T. Ito, M. Maeda, K. Nakamura, H. Kato, Y. Ohki. J. Appl. Phys. 97, 5, 054104 (2005). DOI: 10.1063/1.1856220
  54. M. Villanueva-Ibaez, C. Le Luyer, C. Dujardin, J. Mugnier. Mater. Sci. Eng. B105, 1-3, 12 (2003). DOI: 10.1016/j.mseb.2003.08.006
  55. L. Mariscal-Becerra, M.C. Flores-Jimenez, M. Hernandez-Alcantara, E. Camarillo, C. Falcony-Guajardo, R. Vazquez-Arregui n, H. Murrieta Sanchez. J. Nanophotonics 12, 3, 036013 (2018). DOI: 10.1117/1.JNP.12.036013
  56. Yu.K. Voronko, B.I. Denker, V.V. Osiko. FTT 13, 8, 2193 (1971). (in Russian)
  57. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys. 90, 7, 3443 (1989). DOI: 10.1063/1.455853
  58. J.C.G. Bunzli, C. Piguet. Chem. Soc. Rev. 34, 12, 1048 (2005). DOI: 10.1039/B406082M
  59. A. Ciric, S. Stojadinovic. J. Lumin. 26, 17, 116762 (2020). DOI: 10.1016/j.jlumin.2019.116762
  60. A. Konrad, U. Herr, R. Tidecks, F. Kummer, K. Samwer. J. Appl. Phys. 90, 7, 3516 (2001). DOI: 10.1063/1.1388022
  61. O. Kalantaryan, V.N. Karazin, V. Zhurenko, S. Kononenko, R. Skiba, V. Chishkala, M. Azarenkov. 2020 IEEE 10th Int. Conf. Nanomater.: Applications \& Properties (NAP) P. 01NP03 (2020). DOI: 10.1109/NAP51477.2020
  62. V.I. Solomonov, V.V. Osipov, V.A. Shitov, K.E. Lukyashin, A.S. Bubnova. Optika i spektroskopiya 128, 1, 5 (2020). (in Russian). DOI: 10.21883/OS.2020.01.48831.117-19
  63. L. Li, X. Zhang, X. Wei, G. Wang, C. Guo. J. Nanosci. Nanotechnol. 14, 6, 4313 (2014). DOI: 10.1166/jnn.2014.8049
  64. L.Q. An, J. Zhang, M. Liu, S.W. Wang. Key Eng. Mater. 280-283, 28, 521 (2005). DOI: 10.4028/www.scientific.net/KEM.280-283.521
  65. N.A. Safronova, R.P. Yavetskiy, O.S. Kryzhanovska, S.V. Parkhomenko, A.G. Doroshenko, M.V. Dobrotvorska, A.V. Tolmachev, R. Boulesteix, A. Maitre, T. Zorenko, Yu. Zorenko. Opt. Mater. 101, 109730 (2020). DOI: 10.1016/j.optmat.2020.109730
  66. Y. Yu, Y. Huang, L. Zhang, Z. Lin, G. Wang. PLoS ONE 8, 1, e54450 (2013). DOI: 10.1371/journal.pone.0054450
  67. S. Nishimura, S. Fuchi, Y. Takeda. J. Mater. Sci.: Mater. Electron. 26, 8, 10, 7157 (2017). DOI: 10.1007/s10854-017-6699-7
  68. S. Nishimura, Y. Nanai, S. Koh, S. Fuchi. J. Mater. Sci: Mater. Electron. 32, 11, 14813 (2021). DOI: 10.1007/s10854-021-06035-w
  69. K. Bhargavi, M.S. Rao, N. Veeraiah, B. Sanyal, Y. Gandhi, G.S. Baskaran. Int. J. Appl. Glass Sci. 6, 2, 128 (2014). DOI: 10.1111/ijag.12100
  70. X. Tan, S. Xu, L. Zhang, F. Liu, B.A. Goodman, W. Deng. Appl. Phys. A 124, 12, 853 (2018). DOI: 10.1007/s00339-018-2284-z
  71. T. Kallel, M.A. Hassairi, M. Dammak, A. Lyberis, P. Gredin, M. Mortier. J. Alloys. Compounds 584, 261 (2014). DOI: 10.1016/j.jallcom.2013.09.057

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru