Electronic band structure and thermoelectric properties of SrTiO3, BaTiO3 and CaTiO3: ab initio approach
Zhukov V. P. 1, Chulkov E. V.2,3
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Dpto. de Poli meros y Materiales Avanzados: Fi sica, Qui mica y Tecnologi a, Facultad de Ciencias Qui micas, Aptdo., Donostia-San Sebastian, Basque Country, Spain
Email: evguenivladimirovich.tchoulkov@ehu.eus

PDF
The calculations of Seebeck's coefficient, conductivity and power functions for the electron-doped SrTiO3, BaTiO3 and CaTiO3 compounds have been performed depending on temperature and current carrier concentration by employing ab initio method based on the electron density functional theory, on the Frohlich's approach for the electron-phonon interaction and on the theory of Boltzmann-Onsager for the thermoelectric properties. The calculated Seebeck's coefficient and conductivity correspond to experimental data. It is shown that for SrTiO3 and BaTiO3 the dependencies of power functions on the carrier concentration have maxima in the range of (200-250)·1019 cm-3 at any temperature, while for CaTiO3 the maxima are typical only at temperatures below 500 K. The temperature dependencies of the power function also confirm that such carrier concentration range is favorable for achieving high values of the SrTiO3 figure of merit, while the maximally possible carrier concentration is necessary for optimal CaTiO3 figure of merit. Keywords: Ca, Sr, Ba titanates, PAW method, electronic structure, thermoelectric properties.
  1. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen. Energy Environ. Sci. 5, 5147 (2012)
  2. T. Wu, P. Gao. Materials 11, 999 (2018)
  3. R. Li, Ch. Zhang, J. Liu, J. Zhou, L. Xu. Mater. Res. Express 6, 102006 (2019)
  4. M. Yamamoto, H. Ohta, K. Koumoto. Appl. Phys. Lett. 90, 072101 (2007)
  5. T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura. Phys. Rev. B 63, 113104 (2001)
  6. Sh. Ohta, T. Nomura, H. Ohta, K. Koumoto. J. Appl. Phys. 97, 034106 (2005)
  7. P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen. Solid State Ion. 179, 2047 (2008)
  8. P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen. Solid State Ion. 180, 63 (2009)
  9. Y. Cui, J.R. Salvador, J. Yang, H. Wang, G. Amov, H. Klaeinke. J. Electron. Mater. 38, 1002 (2009)
  10. N. Wang, H. Li, Y. Ba, Y. Wang, Ch. Wan, K. Fujinami, K. Koumoto. J. Electron. Mater. 39, 1777 (2010)
  11. A. Kikuchi, N. Okinaka, T. Akiyama. Scr. Mater. 63, 407 (2010)
  12. T.T. Khan, I.-H. Kim, S.-Ch. Ur. J. Electron. Mater. 48, 1864 (2019)
  13. H. Usui, Sh. Shibata, K. Kuroki. Phys. Rev. B 81, 205121 (2010)
  14. K. Ozdogan, M. Upadhaya Kahaly, S.R. Sarath Kumar, H.N. Alshareef, U. Schwingenschlogl. J. Appl. Phys. 111, 054313 (2012)
  15. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade. J. Appl. Phys. 113, 053704 (2013)
  16. W.S. Choi, H.K. Yoo, H. Ohta. Adv. Funct. Mater., arXiv:1505.02859v1 (2014)
  17. M.U. Kahaly, U. Schwingenschlogl. J. Mater. Chem. A 2, 10379 (2014)
  18. T.T. Khan, S.Ch. Ur. Electron. Mater. Lett. 14, 336 (2018)
  19. M.N. Khan, H.-T. Kim, H. Minami, H. Uwe. Mater. Lett. 47, 95 (2001)
  20. T. Kolodiazhnyi, A. Petric, M. Niewczas, C. Bridges, A. Safa-Sefat, J.E. Greedan. Phys. Rev. B 68, 085205 (2003)
  21. H. Muta, K. Kurosaki, Sh. Yamanaka. J. Alloys Compd. 368, 22 (2004)
  22. T. Kolodiazhnyi. Phys. Rev. B 78, 045107 (2008)
  23. M.B. Smith, K. Page, Th. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald. J. Am. Chem. Soc. 130, 6955 (2008)
  24. S. Lee, G. Yang, R.H.T. Wilke, S. Trolier-McKinstry, C.A. Randall. Phys. Rev. B 79, 134110 (2009)
  25. T. Bak, J. Nowotny, C.C. Sorreil, M.F. Zhou. Ionics 10, 334 (2004)
  26. L.H. Oliveira, J. Savioli, A.P. de Moura, I.C. Nogueira, M.S. Li, E. Longo, J.A. Varela, I.L.V. Rosa. J. Alloys Compd. 647, 265 (2015)
  27. J. Li, Y. Wang, X. Yang, H. Kang, Zh. Cao, X. Jiang, Z. Chen, E. Guo, T. Wang. Chem. Eng. J. 428, 131121 (2022)
  28. R. Zhang, X. Hu, P. Guo, Ch. Wang. Physica B 407, 1114 (2012)
  29. A.A. Adewale, A. Chik, R.M. Zaki, F.Ch. Pa, Y.Ch. Keat, N.H. Jamil. Int. J. Nanoelectron. Mater. 12, 477 (2019)
  30. S. Ponce, E.R. Margine, C. Verdi, F. Giustino. arXiv:1604.03525v2
  31. J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, M. Bernardi. arXiv:2002.02045v1
  32. A.M. Ganose, J. Park, A. Faghanini, R. Woods-Robinson, K.A. Persson, A. Jain. Naure Commun. 12, 2222 (2021)
  33. M. Yashima, R. Ali. Solid State Ion. 180, 120 (2009)
  34. G. Kresse, M. Marsman, J. Furthmuller. Vienna ab initio simulation package. VASP the guide. UniversitatWien, Wien (2018). 233 p
  35. G.D. Mahan. Many-particle physics. Plenum Press, N.Y. (1990). 1032 p
  36. V.P. Zhukov, E.V. Chulkov. FTT 64, 418 (2022) (in Russian).
  37. K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, T. Hyeon. J. Mater. Chem. A, 2, 4217 (2014)
  38. F. Hanzig, J. Hanzig, E. Mehner, C. Richter, J. Vesely, H. Stocker, B. Abendroth, M. Motylenko, V. Klemm, D. Novikov, D.C. Meyer. J. Appl. Crystallogr. 48, 393 (2015)
  39. J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei. J. Electron. Mater. 41, 3073 (2012).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru