Structure Analysis, Photoluminescence, and Non-linear/Linear Optical Parameters of Li2Ge4O9 : Mn4+ Transparent Glass-Ceramic
Morad I.1,2, Liu X.3, Elhosiny Ali H4,5, El-Desoky M. M.2, Qiu J.1
1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
2Department of Physics, Faculty of Science, Suez University, Suez, Egypt
3School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
4Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, P.O. Box, Saudi Arabia
5Department of Physics, Faculty of Science, Zagazig University, Zagazig, Egypt
Email: hithamph@gmail.com

PDF
In this study, Li2Ge4O9 : Mn4+ transparent glass-ceramic was prepared by conventional melt-quenching. The thermal treatment was used for the devitrification of the sample. The creation of a Li2Ge4O9 nanocrystalline precipitated through the glass matrix was verified by X-ray diffraction and HR-TEM. Electron paramagnetic resonance spectra were employed to confirm the oxidation of Mn2+ to Mn4+ in glass-ceramic after thermal treatment. The photoluminescence spectra displayed a narrow red band centered at 668 nm ascribed to the spin-forbidden 4Eg->4A2g transition of Mn4+. To estimate the optical parameters, UV-Vis-IR absorption spectroscopies were measured. The red shift of the direct optical band gap Eoptg, from 3.81 to 2.55 eV, was observed by increasing the Mn4+ concentration. The dispersion parameters, refraction indices (n, nбесконечность), and oscillator wavelength (λ0) were examined by using Wemple-DiDomenico single-oscillator model. The relationship between the refractive index and the energy gap has been investigated using various models such as Moss, Herve-Vandamme, Ravindra, and Singh-Kumar. In addition, the linear and non-linear optical properties of Li2Ge4O9 : Mn4+ were mentioned. The temperature-dependent luminescence intensity measurement was also carried out. The method of preparation exposed herein for the synthesis of Mn4+-doped GCs might be prevailing to produce identical luminescent ceramics in accordance with the glass's devitrification. Keywords: glass-ceramics, photoluminescence, optical properties, non-linear/linear optical, dispersion parameters, energy gap
  1. R. Suzuki, J. Kunitomo, Y. Takahashi, K. Nakamura, M. Osada, N. Terakado, and T. Fujiwara. J. Ceram. Soc. Jpn 123, 1441, 888 (2015)
  2. H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko. Appl. Phys. Lett. 101, 19, 191906 (2012)
  3. P.F. Smet, A.B. Parmentier, and D. Poelman. J. Electrochem. Soc. 158, 6, R37 (2011)
  4. Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue. Appl. Phys. Lett. 88, 15, 151903 (2006)
  5. M. You, J. Xu, Z. Zhang, and Y. Zhou. Ceram. Int. 40, 10, 16189 (2014)
  6. B. Wang, H. Lin, J. Xu, H. Chen, and Y. Wang. ACS Appl. Mater. Interfaces 6, 24, 22905 (2014)
  7. S. Okamoto and H. Yamamoto. J. Electrochem. Soc. 157, 3, J159 (2010)
  8. Y. Zhang, S. Hu, Y. Liu, Z. Wang, G. Zhou, and S. Wang. Ceram. Int. 44, 18, 23259 (2018)
  9. R. Cao, J. Huang, X. Ceng, Z. Luo, W. Ruan, and Q. Hu. Ceram. Int. 42, 11, 13296(2016)
  10. M. Peng, X. Yin, P.A. Tanner, M. Brik, and P. Li. Chem. Mater. 27, 8, 2938 (2015)
  11. X. Ding, G. Zhu, W. Geng, Q. Wang, and Y. Wang. Inorganic Chem. 55, 1, 154(2015)
  12. W. Lu, W. Lv, Q. Zhao, M. Jiao, B. Shao, and H. You. Inorganic Chem. 53, 22, 11985 (2014)
  13. L. Meng, L. Liang, and Y. Wen. J. Mater. Sci.: Mater. Electron. 25, 6, 2676 (2014)
  14. S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, and J. Lin. J. Mater. Chem. C 4, 26, 6409 (2016)
  15. H. Zhang, H. Zhang, J. Zhuang, H. Dong, Y. Zhu, X. Ye, Y. Liu, and B. Lei. Ceram. Int. 42, 11, 13011 (2016)
  16. I. Morad, X. Liu, and J. Qiu. J. Am. Ceram. Soc. 102, 10, 5843 (2019)
  17. Y. Takahashi, J. Kunitomo, T. Miyazaki, M. Osada, and T. Fujiwara. J. Appl. Phys. 114, 3, 033512 (2013)
  18. J. Kunitomo, R. Suzuki, Y. Takahashi, T. Miyazaki, N. Terakado, and T. Fujiwara. J. Ceram. Soc. Jpn 122, 1428, 725 (2014)
  19. K. Omel'chenko, O. Khmelenko, T. Panchenko, and M. Volnyanskii. Phys. Solid State 56, 4, 751 (2014)
  20. A. Alias, T.I.T. Kudin, Z.M. Zabidi, M.K. Harun, A.M.M. Ali, and M.F. Yahya. Adv. Mater. Res., Trans Tech Publ 652--654, 532 (2013)
  21. M. El-Desoky. J. Non-Crystal. Solids 351, 37-39, 3139 (2005)
  22. I. Morad, H.E. Ali, M. Wasfy, A. Mansour, and M. El-Desoky. Vacuum 181, 109735 (2020)
  23. R. Apetz and M.P.B. Van Bruggen. J. Am. Ceram. Soc. 86, 3, 480 (2003)
  24. M. Saleem, L. Fang, H. Ruan, F. Wu, Q. Huang, C. Xu, and C. Kong. Int. J. Phys. Sci. 7, 23, 2971 (2012)
  25. C. Suryanarayana and N. Grant. Practical Approach: X-Ray Diffraction. A Practical Approach. Plenum Press, N. Y. (1998)
  26. P. Bindu and S. Thomas. J. Theor. Appl. Phys. 8, 4, 123 (2014)
  27. T. Pandiyarajan and B. Karthikeyan. J. Nanopart. Res. 14, 1, 647 (2012)
  28. M. Volnianskii, M. Trubitsyn, and O. Bibikova. Ferroelectrics 443, 1, 16 (2013)
  29. H. V.ollenkle, A. Wittmann, and H. Nowotny. Monatshefte f. Chemie / Chemical Monthly 100, 1, 79 (1969)
  30. I. Prakash, B. Babu, C.V. Reddy, P.N. Murty, Y. Reddy, P.S. Rao, and R. Ravikumar. Physica B 406, 17, 3295 (2011)
  31. S.K. Gupta, R. Kadam, R. Gupta, M. Sahu, and V. Natarajan. Mater. Chem. Phys. 145, 1-2, 162 (2014)
  32. V. Vazhenin, A. Potapov, V. Guseva, and M.Y. Artyomov. Phys. Solid State 52, 3, 515 (2010)
  33. Y. Zhang, S. Hu, Y. Liu, Z. Wang, W. Ying, G. Zhou, and S. Wang. J. Eur. Ceram. Soc. 39, 2-3, 584 (2019)
  34. R. Rakhimov, A. Wilkerson, G. Loutts, M. Noginov, N. Noginova, W. Lindsay, and H. Ries. Solid State Commun. 108, 8, 549 (1998)
  35. C. Ming, H. Liu, F. Song, X. Ren, L. An, Y. Hao, and G. Wang. Current Appl. Phys. 13, 6, 1109 (2013)
  36. T. Erdem and H.V. Demir. Nature Photon. 5, 3, 126 (2011)
  37. O. Dymshits, M. Shepilov, and A. Zhilin. MRS Bull. 42, 3, 200 (2017)
  38. J.L. Pankove. Optical processes in semiconductors. Courier Corporation (1975)
  39. F. Urbach. Phys. Rev. 92, 5, 1324 (1953)
  40. K. Subrahmanyam and M. Salagram. Opt. Mater. 15, 3, 181 (2000)
  41. S. Rani, S. Sanghi, A. Agarwal, and V. Seth. Spectrochim. Acta A 74, 3, 673 (2009)
  42. N. Shah, J. Ray, V. Kheraj, M. Desai, C. Panchal, and B. Rehani. J. Mater. Sci. 44, 1, 316 (2009)
  43. S. Wemple and M. DiDomenico Jr. Phys. Rev. B 3, 14, 1338 (1971)
  44. H.S. Shaaker, W.A. Hussain, and H.A. Badran. Adv. Appl. Sci. Res. 3, 5, 2940 (2012)
  45. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, and A. Sharma. Mater. Chem. Phys. 139, 2-3, 802 (2013)
  46. I. Morad, A. Alshehri, A. Mansour, M. Wasfy, and M. El-Desoky. Physica B 597, 412415 (2020)
  47. T. Moss. Phys. Status Solidi B 131, 2, 415 (1985)
  48. V. Gupta and N. Ravindra. Phys. Status Solidi B 100, 2, 715 (1980)
  49. N.M. Ravindra, S. Auluck, and V.K. Srivastava. Phys. Status Solidi B 93, 2, K155 (1979)
  50. R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, G. Balakrishnaiah, and M.R. Kumar. J. Alloys Comp. 473, 1-2, 28 (2009)
  51. P. Herve and L. Vandamme. Infrared Phys. Technol. 35, 4, 609 (1994)
  52. V. Kumar and J. Singh. Indian J. Pure \& Appl. Phys. 48, 571 (2010)
  53. Y. Akaltun, M.A. Yi ldi ri m, A. Ates, and M. Yi ldi ri m. Opt. Commun. 284, 9, 2307 (2011). https://doi.org/10.1016/j.optcom.2010.12.094
  54. P.N. Prasad and D.R. Ulrich. Nonlinear optical and electroactive polymers. Plenum Press, N.Y. (2012)
  55. M.S. Reddy, K.R. Reddy, B. Naidu, and P. Reddy. Opt. Mater. 4, 6, 787 (1995)
  56. M. Frumar, J. Jedelsky, B. Frumarova, T. Wagner, and M. Hrdlicka. J. Non-Crystal. Solids 326-327, 399 (2003)
  57. V. Ganesh, I. Yahia, S. AlFaify, and M. Shakir. J. Phys. Chem. Solids 100, 115 (2017)
  58. H. Ticha and L. Tichy. J. Optoelectron. Adv. Mater. 4, 2, 381 (2002)
  59. C.C. Wang. Phys. Rev. B 2, 6, 2045 (1970)
  60. T.A. Hamdalla, S.M. Selim, A.K. Mohamed, and M.E. Mahmoud. Opt. Mater. 95, 109215 (2019)
  61. L. Tichy, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, and M. Vlcek. Mater. Lett. 39, 2, 122 (1999)
  62. R. Cao, Y. Jiao, X. Wang, X. Ouyang, H. Wan, T. Chen, G. Zheng, and S. Xie. Adv. Powder Technol. 31, 9, 4045 (2020)
  63. R. Cao, W. Zhang, T. Chen, Y. Zheng, H. Ao, Z. Luo, S. Xie, and H. Wan. Mater. Res. Bull. 137, 111200 (2021)
  64. A. Winterstein, H. Akamatsu, D. Moncke, K. Tanaka, M. Schmidt, and L. Wondraczek. Opt. Mater. Express 3, 2, 184 (2013)
  65. Z. Zou, J. Wu, H. Xu, J. Zhang, Z. Ci, and Y. Wang. J. Mater. Chem. C 3, 31, 8030 (2015)
  66. G. Blasse. J. Solid State Chem. 62, 2, 207 (1986)
  67. D.L. Dexter and J.H. Schulman. J. Chem. Phys. 22, 6, 1063 (1954)
  68. A. Fu, A. Guan, D. Yu, S. Xia, F. Gao, X. Zhang, L. Zhou, Y. Li, and R. Li. Mater. Res. Bull. 88, 258 (2017)
  69. B. Wang, H. Lin, F. Huang, J. Xu, H. Chen, Z. Lin, and Y. Wang. Chem. Mater. 28, 10, 3515 (2016).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru