Thermophoresis of carbon nanoparticles (nanoribbons and nanotubes) on a flat multilayer substrate of hexagonal boron nitride (h-BN)
Savin A. V.1,2
1N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Plekhanov Russian University of Economic, Moscow, Russia
Email: asavin@center.chph.ras.ru

PDF
Using the method of molecular dynamics and a 2D chain model, it is shown that thermophoresis of carbon nanoparticles (nanoribbons and nanotubes) on a flat multilayer substrate (on a flat surface of a hexagonal boron nitride crystal) has high efficiency. Placing a nanoparticle on a flat surface of a substrate involved in heat transfer leads to its movement in the direction of the heat flow. The heat flow along the substrate leads to the formation of constant forces acting on the nanoparticle nodes (thermophoresis forces). The main effect of the force is exerted on the edges of graphene nanoribbons, exactly where the main interaction of the nanoribbon with the bending phonons of the substrate occurs. These phonons have a long free path, so the effective transfer of nanoparticles using thermophoresis can occur at sufficiently large distances. The motion of carbon nanoparticles under the action of a heat flow has the form of particle motion in a viscous medium under the action of a constant force. Over time, the nanoparticles always enter the mode of movement at a constant speed. The velocity of the stationary motion is almost the same for all sizes and types of carbon nanoparticles, which is explained by the fact that the thermophoresis force and effective friction have the same source - the interaction of the nanoparticle with the bending thermal vibrations of the substrate layers. Keywords: nanoribbons, nanotubes, flat multilayer substrates, thermophoresis, 2D model of the multilayer substrate.
  1. N. Azong-Wara, C. Asbach, B. Stahlmecke, H. Fissan, H. Kaminski, S. Plitzko, D. Bathen, T.A.J. Kuhlbusch. J. Nanopart. Res. 15, 1530 (2013)
  2. A. Barreiro, R. Rurali, E.R. Hernandez, J. Moser, T. Pichler, L. Forro, A. Bachtold. Science 320, 775-778 (2008)
  3. R. Piazza. Soft Matter 4, 9, 1740-1744 (2008)
  4. B. Liu, K. Zhou. Prog. Mater. Sci. 100, 99-169 (2019)
  5. R. Guerra, U. Tartaglino, A. Vanossi, E. Tosatti Ballistic nanofriction. Nature Mater. 9, 634-637 (2010)
  6. E. Panizon, R. Guerra, E. Tosatti. PNAS 114 (34), E7035 (2017)
  7. M. Jafary-Zadeh, C.D. Reddy, V. Sorkin, Y.-W. Zhang. Nanoscale Res. Lett. 7, 148 (2012)
  8. A.V. Savin, Y.S. Kivshar. Transport of fullerene molecules along graphene nanoribbons. Sci. Rep. 2, 1012 (2012)
  9. M. Becton, X. Wang. J. Chem. Theory Comput. 10, 722 (2014)
  10. R. Rajegowda, S.K. Kannam, R. Hartkamp, S.P. Sathian. Nanotechbology 29, 21, 215401 (2018)
  11. D. Wang, L. Wang, Z. Hu. Nanoscale Res. Lett. 15, 203 (2020)
  12. A. V. Savin, O.I. Savina. FTT, 63, 4, 564-571 (2021) (in Russian)
  13. P.A.E. Schoen, J.H. Walther, S. Arcidiacono, D. Poulikakos, P. Koumoutsakos. Nano Lett. 6, 9, 1910 (2006)
  14. P.A.E. Schoen, J.H. Walther, D. Poulikakos, P. Koumoutsakos. Appl. Phys. Lett. 90, 253116 (2007)
  15. J. Shiomi, S. Maruyama. Nanotechnology 20, 055708 (2009)
  16. E. Oyarzua, J.H. Walther, C.M Megaridis, P. Koumoutsakos, H.A. Zambrano. ACS Nano 11, 10, 9997 (2017)
  17. R. Rajegowda, S.K. Kannam, R. Hartkamp, S.P. Sathian. Nanotechnology 28, 155401 (2017)
  18. E. Oyarzua, J.H. Walther, H.A. Zambrano. Phys. Chem. Chem. Phys. 20, 5, 3672 (2018)
  19. Q. Cao. J. Phys. Chem. C 123, 29750 (2019)
  20. A. Panahi, P. Sadeghi, A. Akhlaghi, M.H. Sabour. Diamond \& Related Materials 110 108105 (2020)
  21. H.A. Zambrano, J.H. Walther, R.L. Jaffe. J. Chem. Phys. 131, 241104 (2009)
  22. M.V.D. Prasad, B. Bhattacharya. Nano Lett., 16, 4, 2174 (2016)
  23. M.V.D. Prasad, B. Bhattacharya. Nano Lett. 17, 4, 2131 (2017)
  24. R. Rurali, E.R. Hernandez. Chem. Phys. Lett. 497, 62 (2010)
  25. N. Wei, H.-Q. Wang, J.-C. Zheng. Nanoscale Res. Lett. 7, 1, 154 (2012)
  26. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 92, 035412 (2015)
  27. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, FTT 57, 11, 2278 (2015) (in Russian)
  28. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 99, 235411 (2019)
  29. J.H. Los, J.M.H. Kroes, K. Albe, R.M. Gordillo, M.I. Katsnelson, A. Fasolino. Phys. Rev. B 96, 184108 (2017)
  30. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff. J. Am. Chem. Soc. 114, 10024 (1992)
  31. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529 (2013)
  32. D. Mandelli, W. Ouyang, O. Hod, M. Urbakh, Phys. Rev. Lett. 122, 076102 (2019)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru