Temperature investigations of magnetic properties when analyzing the structural phase state of a model nanocomposite with carbidosteel composition
Ulyanov A. I. 1, Chulkina A. A. 1, Ulyanov A. L. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: uai@udman.ru, chulkina@udman.ru, ulyanov@udman.ru

PDF
The phase composition, magnetic state of the phases and their influence on the formation of the magnetic hysteresis properties of the nanocomposite with the (Fe0.85Mn0.10Ni0.05)83C17 composition after mechanosynthesis and subsequent annealing have been studied. It is shown that, although the dependences of the coercive force on the annealing temperature H_c(Tann) of the alloy, measured at room and liquid nitrogen temperatures, are curves with maxima, the formation of Hc is driven by different mechanisms. At room temperature measurements, the maximum Hc value of the composite is obtained when the size of the ferrite phase precipitates approaches to the critical single-domain state, whereas at low temperature maximum Hc value is caused by the change of the cementite structural state upon annealing. Keywords: Nanocrystalline Fe-C-Mn-Ni alloys, mechanical alloying, heat treatment, X-Ray diffraction, coercive force, magnetic susceptibility, Curie temperature, Mossbauer spectroscopy.
  1. A.I. Gusev. Nanomaterialy, nanostruktury, nanotekhnologii. Fizmatlit, M. (2009). 416 p. (in Russian)
  2. N.A. Koneva, E.V. Kozlov, A.N. Zhdanov. Bulletin of the Russian Academy of Sciences: Physics. 70, 4, 663 (2006)
  3. Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.-J. Fecht. Acta Materialia 51, 18, 5555 (2003)
  4. R.Z. Valiev, I.V. Alexandrov. Ob'yomnye nanokristallicheskie materialy: poluchenie, struktura i svoistva. Akademkniga, M. (2007). 398 p. (in Russian)
  5. Y.Z. Chen, A. Herz, Y.J. Li, C. Borchers, P. Choi, D. Raabe, R. Kirchheim. Acta Materialia 61, 9, 3172 (2013)
  6. Z.G. Liu, X.J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto, S.M. Hao. Scripta Materialia 44, 8, 1775 (2001)
  7. M.N. Mikheev, E.S. Gorkunov. Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya. Nauka, M. (1993). 252 p. (in Russian)
  8. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, S.S. Babu. Acta Materialia 56, 2, 188 (2008)
  9. A.I. Ulyanov, A.A. Chulkina, V.A. Volkov, E.P. Elsukov, A.V. Zagainov, A.V. Protasov, I.A. Zykina. The Physics of Metals and Metallography 113, 12, 1134 (2012)
  10. E. Bruck. In: Handbook of Magnetic Materials / Ed. K.H.J. Buschow. 17, Ch. 4. Elsevier, Amsterdam, North Holland (2008). P. 235
  11. S.V. Vonsovsky. Magnetizm. Nauka, M. (1971). 1032 p. (in Russian)
  12. N.P. Dyakonova, E.V. Shelekhov, T.A. Sviridova, A.A. Reznikov. Zavod. lab. 63, 10, 17 (1997) (in Russian)
  13. E.V. Voronina, N.V. Ershov, A.L. Ageev, Yu.A. Babanov. Phys. Status Solidi B 160, 2, 625 (1990)
  14. V.I. Petinov. Technical Physics 59, 1, 6 (2014)
  15. G.I. Frolov, O.I. Bachina, M.M. Zavyalova, S.I. Ravochkin. Technical Physics 53, 8, 1059 (2008)
  16. A.K. Arzhnikov, L.V. Dobysheva, C. Demangeat. J. Phys.: Condens. Matter 19, 19, 196214 (2007)
  17. B.A. Apaev. Fazovyi magnitnyi analiz splavov. Metallurgiya, M. (1976). 280 p. (in Russian)
  18. S. Tikazumi. Fizika ferromagnetizma. Magnitniye svoistva veshchestva. Mir, M. (1983). 304 p. (in Russian)
  19. E.P. Elsukov, G.A. Dorofeev, V.V. Boldyrev. Doklady Chemistry 391, 4-6, 206 (2003)
  20. M.I. Goldstein, S.V. Grachev, Yu.G. Veksler. Spetsialniye stali. MISIS, M., (1999). 408 p. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru