Physics of the Solid State
Volumes and Issues
Ab initio study of the compressibility and electronic properties of a molecular organic crystal C8H10O2
Korabel’nikov D. V. 1, Fedorov I. A. 1
1Kemerovo State University, Kemerovo, Russia
Email: dkorabelnikov@yandex.ru

PDF
The structure and electronic properties of a molecular organic crystal octa-3,5-diyn-2,7-diol (C8H10O2) were studied in the pressure range from 0 to 1 GPa on the basis of ab initio calculations in the framework of the density functional theory taking into account the dispersion interaction. The compressibilities of C8H10O2 were calculated and a significant negative linear compressibility (-44 TPa-1) was established, which is caused by a change in the orientation and linear dimensions of molecular structural units relative to the crystallographic axes. Based on a topological analysis of the electron density, it is shown that hydrogen bonds are partially covalent in nature, and their energies are relatively high. It is shown that the upper valence and lower unoccupied electronic states correspond mainly to the states of carbon atoms. The band gap of C8H10O2 is calculated and its decrease with increasing pressure is predicted. Keywords: molecular crystal, negative compressibility, pressure, band gap, electron density, density functional theory.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru