Ab initio study of the compressibility and electronic properties of a molecular organic crystal C8H10O2
Korabel’nikov D. V.
1, Fedorov I. A.
11Kemerovo State University, Kemerovo, Russia
Email: dkorabelnikov@yandex.ru
The structure and electronic properties of a molecular organic crystal octa-3,5-diyn-2,7-diol (C8H10O2) were studied in the pressure range from 0 to 1 GPa on the basis of ab initio calculations in the framework of the density functional theory taking into account the dispersion interaction. The compressibilities of C8H10O2 were calculated and a significant negative linear compressibility (-44 TPa-1) was established, which is caused by a change in the orientation and linear dimensions of molecular structural units relative to the crystallographic axes. Based on a topological analysis of the electron density, it is shown that hydrogen bonds are partially covalent in nature, and their energies are relatively high. It is shown that the upper valence and lower unoccupied electronic states correspond mainly to the states of carbon atoms. The band gap of C8H10O2 is calculated and its decrease with increasing pressure is predicted. Keywords: molecular crystal, negative compressibility, pressure, band gap, electron density, density functional theory.
- E.V. Boldyreva, T.P. Shakhtsneider, H. Ahsbahs. J. Therm. Anal. Calorim. 68, 437 (2002)
- E.V. Boldyreva. J. Mol. Struct. 647, 159 (2003)
- Yu.V. Matveychuk, E.V. Bartashevich, V.G. Tsirelson. Cryst. Growth Des. 18, 3366(2018)
- E.V. Bartashevich, S.A. Sobalev, Yu.V. Matveychuk, V.G. Tsirelson. J. Struct. Chem. 62, 1607 (2021) (in English)
- R.H. Baughman, S. Stafstrom, C. Cui, S.O. Dantas. Science 279, 1522 (1998)
- D. Das, T. Jacobs, L.J. Barbour. Nature Mater. 9, 36 (2010)
- A.D. Fortes, E. Suard, K.S. Knight. Science 331, 742 (2011)
- S. Hodgson, J. Adamson, S. Hunt, M. Cliffe, A.B. Cairns, A.L. Goodwin. Chem. Commun. 50, 5264 (2014)
- L. Wang, C. Wang, H. Luo, Y. Sun. J. Phys. Chem. C 121, 333 (2017)
- K. Dolabdjian, A. Kobald, C.P. Romao, H. Meyer. Dalton Trans. 47, 10249 (2018)
- D.V. Korabel'nikov, I.A. Fedorov, Yu.N. Zhuravlev. Phys. Solid State 63, 1021 (2021) (in English)
- A.B. Cairns, A.L. Goodwin. Phys. Chem. Chem. Phys. 17, 20449 (2015)
- P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcaniz, F. Kapteijn, F.-X. Coudert, J. Gascon. Cryst. Eng. Commun. 17, 276 (2015)
- W. Cai, A. Katrusiak. Nature Commun. 5, 4337 (2014)
- S. Duyker, V. Peterson, G. Kearley, A. Studer, C. Kepert. Nature Chem. 8, 270 (2016)
- H. Wang, M. Feng, Y. Wang, Z. Gu. Sci. Rep. 6, 26015 (2016)
- D.V. Korabel'nikov, Yu.N. Zhuravlev. Phys. Chem. Chem. Phys. 18, 33126 (2016)
- D.V. Korabel'nikov, Yu.N. Zhuravlev. J. Phys. Chem. A 121, 6481 (2017)
- S. Sobczak, A. Porolniczak, W. Cai, A. Gadysiak, V.I. Nikolayenko, D. Castell, L. Barbour, A. Katrusiak. Chem. Commun. 56, 4324 (2020)
- E. Zurek, W. Grochala. Phys. Chem. Chem. Phys. 17, 2917 (2015)
- D.C. Sorescu, B.M. Rice. J. Phys. Chem. C 114, 6734 (2010)
- S. Appalakondaiah, G. Vaitheeswaran, S. Lebegue. J. Chem. Phys. 138, 184705 (2013)
- S. Hunter, P. Coster, A. Davidson, D. Millar, S. Parker, W. Marshall, R. Smith, C. Morrison, C. Pulham. J. Phys. Chem. C 119, 2322 (2015)
- I.A. Fedorov, Yu.N. Zhuravlev. Chem. Phys. 436, 1 (2014)
- D.V. Korabel'nikov, Yu. N. Zhuravlev. J. Phys. Chem. Solids 87, 38 (2015)
- D.V. Korabel'nikov, Yu.N. Zhuravlev. Phys. Solid State 59, 254 (2017) (in English)
- I.A. Fedorov. Comput. Mater. Sci. 139, 252 (2017)
- D.A. Rychkov. Crystals. 10, 81 (2020)
- D.V. Korabel'nikov, Yu.N. Zhuravlev. RSC Advances. 10, 42204 (2020)
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010)
- I. Fedorov, D. Korabel'nikov, C. Nguyen, A. Prosekov. Amino Acids. 52, 425 (2020)
- I.A. Fedorov, C.V. Nguyen, A.Y. Prosekov. ACS Omega 6, 642 (2021)
- Yu.N. Zhuravlev, D.V. Korabel'nikov. Mater. Today Commun. 28, 102509 (2021)
- I. Fedorov. J. Phys.: Condens. Matter. 34, 145702 (2022)
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni. J. Phys.: Condens. Matter. 21, 395502 (2009)
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976)
- C. Adamo, V. Barone. J. Chem. Phys. 110, 6158 (1999)
- M.F. Peintinger, D. Vilela Oliveira, T. Bredow. J. Comput. Chem. 34, 451 (2013)
- R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci. 8, e1360 (2018)
- C. Gatti, S. Casassa. TOPOND14 User's Manual. CNR-ISTM Milano, Milano (2014)
- R.F.W. Bader. Chem. Rev. 91, 893 (1991)
- E. Espinosa, E. Molins, C. Lecomte. Chem. Phys. Lett. 285, 170 (1998)
- D. Cremer, E. Kraka. Angew. Chem. Int. Ed. 23, 627 (1984)
- E. Espinosa, I. Alkorta, J. Elguero, E. Molins. J. Chem. Phys. 117, 5529 (2002)
- S.J. Grabowski. Chem. Rev. 111, 2597 (2011)
- C. Gatti. Z. Kristallogr. 220, 399 (2005)
- D.V. Korabel'nikov, Yu.N. Zhuravlev. RSC Advances 9, 12020 (2019).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.