Physics of the Solid State
Volumes and Issues
Sputtering and ripples formation by gas cluster ions on LiNbO3 crystal
Ieshkin A. E. 1, Ilina T. S. 2, Kiselev D. A. 2, Senatulin B. R. 2, Skryleva E. A. 2, Suchaneck G. 3, Parkhomenko Yu. N.2
1Lomonosov Moscow State University, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Solid-State Electronics Laboratory, TU Dresden, Dresden, Germany
Email: ieshkin@physics.msu.ru, ilina.tatina@gmail.com, dm.kiselev@misis.ru, senatulin.br@misis.ru, easkryleva@gmail.com, gunnar.suchaneck@tu-dresden.de

PDF
The work addresses the creation of surface structures on lithium niobate single crystals. Surface topography of lithium niobate surface sputtered with gas cluster ion beams was investigated. Surface ripples induced on the surface were analyzed using power spectral density functions approach, their evolution with ion fluence and their dependence on the cluster ion energy discussed. Sputter yield value was shown to decrease with surface roughness increase, the reasons of the effect are indicated. Local piezoresponse of the rippled surface was studied. Keywords: ferroelectrics, LiNbO3 crystal, gas cluster ions, self-organization, AFM, PSD function.
  1. I. Yamada. Mater. Sci. Eng. R 34, 231 (2001). https://doi.org/10.1016/S0927-796X(01)00034-1
  2. A.E. Ieshkin, A.B. Tolstoguzov, N.G. Korobeishchikov, V.O. Pelenovich, V.S. Chernysh. Uspekhi Fiz. Nauk. (2022). https://doi.org/10.3367/UFNr.2021.06.038994
  3. I. Yamada, J. Matsuo, N. Toyoda, T. Aoki, E. Jones, Z. Insepov. Mater. Sci. Eng. A 253, 249 (1998). https://doi.org/10.1016/s0921-5093(98)00733-3
  4. A.E. Ieshkin, A.A. Shemukhin, Yu.A. Ermakov, V.S. Chernysh. Vestn. MGU. Fizika, astronomiya 1, 72 (2016) (in Russian). https://doi.org/10.3103/S0027134916010082
  5. V.S. Chernysh, A.E. Ieshkin, D.S. Kireev, A. V. Nazarov, A.D. Zavilgelsky. Surf. Coatings Technol. 388, 125608 (2020). https://doi.org/10.1016/j.surfcoat.2020.125608
  6. A. Delcorte, V. Delmez, C. Dupont-Gillain, C. Lauzin, H. Jefford, M. Chundak, C. Poleunis, K. Moshkunov. Phys. Chem. Chem. Phys. 22, 17427 (2020). https://doi.org/10.1039/d0cp02398a
  7. J.Y. Baek, C.M. Choi, S.J. Lee, B.K. Min, H.S. Kang, D.C. Choo, J.Y. Sung, J.S. Jin, M.C. Choi. Appl. Surf. Sci. 507, 144887 (2020). https://doi.org/10.1016/j.apsusc.2019.144887
  8. O. Romanyuk, I. Gordeev, A. Paszuk, O. Supplie, J.P. Stoeckmann, J. Houdkova, E. Ukraintsev, I. Bartov s, P. Jiv r cek, T. Hannappel. Appl. Surf. Sci. 514, 145903 (2020). https://doi.org/10.1016/j.apsusc.2020.145903
  9. D.F. Yancey, C. Reinhardt. J. Electron Spectros. Rel. Phenomena 231, 104 (2019). https://doi.org/10.1016/j.elspec.2018.01.005
  10. A.E. Ieshkin, D.S. Kireev, A.A. Tatarintsev, V.S. Chernysh, B.R. Senatulin, E.A. Skryleva. Surf. Sci. 700, 121637 (2020). https://doi.org/10.1016/j.susc.2020.121637
  11. E.A. Skryleva, B.R. Senatulin, D.A. Kiselev, T.S. Ilina, D.A. Podgorny, Y.N. Parkhomenko. Surf. Interfaces 26, 101428 (2021). https://doi.org/10.1016/j.surfin.2021.101428
  12. V.Ya. Shur, E.V. Nikolaeva, E.I. Shishkin, V.L. Kozhevnikov, A.P. Chernykh. FTT 44, 11, 2055 (2002) (in Russian)
  13. K.E. Ozerova, A.A. Tatarintsev, E.I. Rau, K.F. Minnebayev, S.V. Zaitsev. Izv. RAN. Ser. fiz. 85, 8, 1074 (2021) (in Russian)
  14. G. Namkoong, K.K. Lee, S.M. Madison, W. Henderson, S.E. Ralph, W.A. Doolittle. Appl. Phys. Lett. 87, 1 (2005). https://doi.org/10.1063/1.2084340
  15. A. Kakekhani, S. Ismail-Beigi, E.I. Altman. Surf. Sci. 650, 302 (2016). https://doi.org/10.1016/j.susc.2015.10.055
  16. S. Sanna, W.G. Schmidt. J. Phys. Condens. Matter. 29, 413001 (2017). https://doi.org/10.1088/1361-648X/aa818d
  17. N. Toyoda, B. Tilakaratne, I. Saleem, W.K. Chu. Appl. Phys. Rev. 6, 020901 (2019). https://doi.org/10.1063/1.5030500
  18. R. Cuerno, J.S. Kim. J. Appl. Phys. 128, 180902 (2020). https://doi.org/10.1063/5.0021308
  19. Q. Huang, Q. jia, J. Feng, H. Huang, X. Yang, J. Grenzer, K. Huang, S. Zhang, J. Lin, H. Zhou, T. You, W. Yu, S. Facsko, P. Jonnard, M. Wu, A. Giglia, Z. Zhang, Z. Liu, Z. Wang, X. Wang, X. Ou. Nature Commun. 10, 2437 (2019). https://doi.org/10.1038/s41467-019-10095-2
  20. R.M. Bradley, J.M.E. Harper. J. Vac. Sci. Technol. A 6, 2390 (1988). https://doi.org/10.1116/1.575561
  21. J. Munoz-Garci a, L. Vazquez, M. Castro, R. Gago, A. Redondo-Cubero, A. Moreno-Barrado, R. Cuerno. Mater. Sci. Eng. R 86, 1 (2014). https://doi.org/10.1016/j.mser.2014.09.001
  22. S.Y. Siew, E.J.H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, A.J. Danner. Opt. Express 26, 4421 (2018). https://doi.org/10.1364/oe.26.004421
  23. M. Qu, Y. Shen, L. Wu, X. Fu, X. Cheng, Y. Wang. Precis. Eng. 62, 10 (2020). https://doi.org/10.1016/j.precisioneng.2019.11.001
  24. A. Osipov, S. Alexandrov, V. Berezenko, A. Speshilova, V. Alexandr, A. Osipov. Sensors Actuators A 337, 113146 (2021). https://doi.org/10.1016/J.SNA.2021.113146
  25. D. Maciazek, M. Kanski, Z. Postawa. Anal. Chem. 10, 4379 (2020). https://doi.org/10.1021/acs.analchem.0c01219
  26. N. Toyoda, I. Yamada. Mater. Res. Soc. Symp. Proc. 849, 109 (2005). https://doi.org/10.1557/proc-849-kk7.9
  27. B.P. Tilakaratne, Q.Y. Chen, W.K. Chu. Materials 10, 1056 (2017). https://doi.org/10.3390/ma10091056
  28. O. Lozano, Q.Y. Chen, B.P. Tilakaratne, H.W. Seo, X.M. Wang, P.V. Wadekar, P. V. Chinta, L.W. Tu, N.J. Ho, D. Wijesundera, W.K. Chu. AIP Adv. 3, 062107 (2013). https://doi.org/10.1063/1.4811171
  29. D.S. Kireev, A.E. Ieshkin, A.A. Shemukhin. Pis'ma v ZhTF 46, 9, 3 (2020) (in Russian). https://doi.org/10.21883/PJTF.2020.09.49362.18021
  30. A. Ieshkin, D. Kireev, K. Ozerova, B. Senatulin. Mater. Lett. 272, 127829 (2020). https://doi.org/10.1016/j.matlet.2020.127829
  31. I. V. Nikolaev, N.G. Korobeishchikov, M.A. Roenko. J. Phys. Conf. Ser. 1382, 3 (2019). https://doi.org/10.1088/1742-6596/1382/1/012162
  32. I.V. Nikolaev, N.G. Korobeishchikov. Appl. Nano 2, 25 (2021). https://doi.org/10.3390/applnano2010003
  33. K. Sumie, N. Toyoda, I. Yamada. Nucl. Instrum. Meth. B 307, 290 (2013). https://doi.org/10.1016/j.nimb.2013.01.087
  34. H.M. Urbassek, R.M. Bradley, M.L. Nietiadi, W. Moller. Phys. Rev. B 91, 165418 (2015). https://doi.org/10.1103/PhysRevB.91.165418
  35. V.I. Shulga. Appl. Surf. Sci. 458, 18 (2018). https://doi.org/10.1016/j.apsusc.2018.07.059
  36. P.J. Cumpson, J.F. Portoles, A.J. Barlow, N. Sano. J. Appl. Phys. 114, 124313 (2013). https://doi.org/10.1063/1.4823815
  37. M.P. Seah. J. Phys. Chem. C 117, 12622 (2013). https://doi.org/10.1021/jp402684c
  38. H. Kitani, N. Toyoda, J. Matsuo, I. Yamada. Nucl. Instrum. Meth. B 121, 489 (1997). https://doi.org/10.1016/S0168-583X(96)00556-3
  39. L. Rzeznik, R. Paruch, B.J. Garrison, Z. Postawa. Nucl. Instrum. Meth. B 269, 1586 (2011). https://doi.org/10.1016/j.nimb.2010.11.098
  40. N.K. Sahoo, S. Thakur, R.B. Tokas. Thin Solid Films 503, 85 (2006). https://doi.org/10.1016/j.tsf.2005.11.107
  41. A. Ieshkin, D. Kireev, V. Chernysh, A. Molchanov, A. Serebryakov, M. Chirkin. Surf. Topogr. Metrol. Prop. 7, 025016 (2019). https://doi.org/10.1088/2051-672X/ab1f49
  42. D. Nev cas, P. Klapetek. Cent. Eur. J. Phys. 10, 181 (2012). https://doi.org/10.2478/s11534-011-0096-2
  43. A. Duparre, E. Quesnel, J. Ferre-Borrull. Appl. Opt. 40, 13, 2190 (2001). https://doi.org/10.1364/AO.40.002190
  44. E.L. Church, P.Z. Takacs. Proc. SPIE 1530, 71 (1991). https://doi.org/10.1117/12.50498
  45. G. Rasigni, F. Varnier, M. Rasigni, J.P. Palmari, A. Llebaria. Phys. Rev. B 27, 819 (1983). https://doi.org/10.1103/PhysRevB.27.819
  46. X. Zeng, V. Pelenovich, B. Xing, R. Rakhimov, W. Zuo, A. Tolstogouzov, C. Liu, D. Fu, X. Xiao. Beilstein J. Nanotechnol. 11, 383 (2020). https://doi.org/10.3762/bjnano.11.29
  47. N. Toyoda, H. Kitani, N. Hagiwara, T. Aoki, J. Matsuo, I. Yamada. Mater. Chem. Phys. 54, 262 (1998). https://doi.org/10.1016/S0254-0584(98)00101-1
  48. N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko, V.V. Atuchin. Appl. Phys. A 124, 833 (2018). https://doi.org/10.1007/s00339-018-2256-3
  49. L. Yang, M.P. Seah, I.S. Gilmore. J. Phys. Chem. C 116, 23735 (2012). https://doi.org/10.1021/jp307203f
  50. M.A. Makeev, A.L. Barabasi. Nucl. Instrum. Meth. B 222, 335 (2004). https://doi.org/10.1016/j.nimb.2004.02.028
  51. V.N. Popok, I. Barke, E.E.B.B. Campbell, K.H. Meiwes-Broer. Surf. Sci. Rep. 66, 347 (2011). https://doi.org/10.1016/j.surfrep.2011.05.002
  52. F. Johann, Y.J. Ying, T. Jungk, A. Hoffmann, C.L. Sones, R.W. Eason, S. Mailis, E. Soergel. Appl. Phys. Lett. 94, 3 (2009). https://doi.org/10.1063/1.3126490

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru