Energy of formation of intrinsic defects and their clusters in the powellite CaMoO4
Dudnikova V. D.1, Antonov D. I.1, Zharikov E. V.2, Eremin N. N.1
1Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: VDudnikova@hotmail.com

PDF
Atomistic simulation of powellite crystals has been carried out. A system of parameters of interatomic potentials is proposed for the calculation of point defects in powellite. The formation energies of intrinsic defects and their clusters, which are spatially related combinations of defects, are estimated. The most favorable localization of interstitial calcium and oxygen ions was determined. The formation energies of the Frenkel and Schottky defects are calculated. It was shown that the most energetically preferred in stoichiometric powellite are the oxygen Frenkel defects. Defects arising from deviations from stoichiometry are considered. It is established that the clustering of defects allows to reduce the energy of their formation by 15-20%. Keywords: powellite, tungstates and molybdates, atomistic simulation, intrinsic defects.
  1. V.B. Alexandrov, L.V. Gorbaty, V.V. Ilyukhin. Crystallography 13, 414 (1968)
  2. R.D. Shannon. Acta Cryst. A 32, 751 (1976)
  3. R.Z. Zhuang, L.Z. Zhang, Z.B. Lin, G.F. Wang. Mater. Res. Innov. 12, 2, 62 (2008)
  4. G.V. Shilova, A.A. Sirotkin, P.G. Zverev. Quantum Electronics 49, 6, 570 (2019) (in Russian)
  5. V.B. Mikhailik, S.Henry, H. Kraus, I. Solskii. Nucl. Instrum. Meth. Phys. Res. A 583, 350 (2007)
  6. S.J. Lee, J.H. Choi, F.A. Danevich, Y.S. Jang, W.G. Kang, N. Khanbekov, H.J. Kim, I.H. Kim, S.C.Kim, S.K. Kim, Y.D. Kim, Y.H. Kim, V.V. Kobychev, V.N. Kornoukhov, J.I. Lee, J.S. Lee, K.B. Lee, M.K. Lee, Y.H. Lee, S.S. Myung, J.H. So, V.I. Tretyak, Y. Yuryev. Astropart. Phys. 34, 732 (2011)
  7. A.S. Shcherbakov, A.O. Arellanes, S.A. Nemov. J. Opt. Soc. Am. B 30, 12, 3174 (2013)
  8. S.N. Mantsevich. Ultrasonics 70, 92 (2016)
  9. Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, X. Huang. J. Alloys Comp. 390, 226 (2005)
  10. P. Dixit, V. Chauhan, P. Kumar, P.C. Pandey. J. Lumin. 223, 7, 117240 (2020)
  11. D. Bosbach, T. Rabung, F. Brandt, T. Fanghanel. Radiochim. Acta 92, 639 (2004)
  12. T. Taurines, B. Boizot. J. Am. Ceram. Soc. 95, 1105 (2012)
  13. Th.P.J. Botden, F.A. Kroger. Physica XV, 8-9, 747 (1949)
  14. R. Saraf, C. Shivakumara, N. Dhananjaya, S. Behera, H. Nagabhushana. J. Mater. Sci. 50, 287 (2015)
  15. R. Dey, A. Kumari, A. K. Soni, V.R. Rai. Sens. Actuators B 210, 581 (2015)
  16. A. Phuruangrat, T. Thongtem, S. Thongtem. J. Alloys Compd. 481, 568 (2009)
  17. S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab. J. Mater Sci: Mater Electron. 27, 5, 4351
  18. X. Guo, S. Song, X. Jiang, J. Cui, Y. Li, W. Lv, H. Liu, Y. Han, L. Wang. J. Alloys Compd. 857, 157515 (2021)
  19. A. Senyshyn, H. Kraus, V. B. Mikhailik, L. Vasylechko, M. Knapp. Phys. Rev. B 73, 014104 (2006)
  20. V.L. Vinograd, D. Bosbach, B. Winkler, J.D. Gale. Phys. Chem. Chem. Phys. 10, 3509 (2008)
  21. V.B. Dudnikova, E.V. Zharikov, N.N. Eremin. Mater. Today Commun. 23, 1 (2020)
  22. Z. Shao, Q. Zhang, T. Liu, J. Chen. Nucl. Instrum. Meth. Phys. Res. B 266, 797 (2008)
  23. J. Chen, Q. Zhang, T. Liu, Z. Shao, C. Pu. Nucl. Instrum. Meth. Phys. Res. B 260, 619 (2007)
  24. Q. Lin, X. Feng, Z. Man. Phys.Rev. B 63, 134105 (2001)
  25. F. Zhang, Q. Zhang, T. Liu, K. Tao. Nucl. Instrum. Meth. Phys. Res. B 240, 675 (2005)
  26. J.D. Gale. Z. Kristallogr. 220, 552 (2005)
  27. N.F. Mott, M.J. Littleton. Trans. Faraday Soc. 34, 485 (1938)
  28. R.F.S. Hearmon. The elastic constants of crystals and other anisotropic materials. In: Landolt-Bornstein tables/ Ed. K.H. Hellwege, A.M. Hellwege. Springer-Verlag, Berlin (1979). III/11. 244 p
  29. W.J. Alton, A.J. Barlow. J. Appl. Phys. 38, 3817 (1967)
  30. J.B. Wachtman, Jr., W.S. Brower, Jr., E.N. Farabaugh. J. Am. Ceram. Soc. 51, 6, 341 (1968)
  31. B.W. James. J. Appl. Phys. 45, 3201 (1974)
  32. W. Bollman. Krist. Technick 13, 1001 (1978)
  33. A. Petrov, P. Kofstad. J. Solid State Chem. 30, 83 (1979)
  34. M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Takano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, M. Diemoz. Nucl. Instrum. Meth. Phys. Res. A 434, 412 (1999)
  35. E.V. Zharikov, V.B. Dudnikova, N.G. Zinovieva, K.A. Subbotin, D.A. Lis, A.I. Titov. J. Alloys Compd. 896, 163083 (2022)
  36. Ya. Zakharko, A. Luchechko, I. Syvorotka, G. Stryganyuk, I. Solskiiet. Rad. Meas. 45, 429 (2010)
  37. T. Liu, J. Chen, F. Yan. J. Lumin. 129, 2, 101 (2009)
  38. Y.B. Abraham, N.A.W. Holzwarth, R.T. Williams, G.E. Matthews, A.R. Tackett. Phys. Rev. B 64, 245109 (2001)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru