Increasing the intensity of the glow of the phosphor Gd2O2S : Tb(3-7 mol.%), caused by a change in the distribution of the Tb3+ activator over the real crystal lattice
Bakovets V.V.1, Sokolov V.V.1, Dolgovesova I.P.1, Pivovarova T.D.1, Filatova I.J.1, Rakhmanova M.I.1, Jushina I.V.1, Asanov I.P.1, Sotnikov I.V.1
1Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: becambe@niic.nsc.ru

PDF
Luminophores Gd2O2S : Tb(3-7 mol.%), obtained through the stage of sol-gel formation of Gd2O3 : Tb precursors with their subsequent sulfidation in sulfur vapor with LiF flux at 700oC, showed high luminescence efficiency. The characterization of the obtained samples by a set of physicochemical methods established that an increase in the concentration of the Tb3+ activator leads to its specific distribution: over gadolinium vacancies (VGd)''', by replacing Gd3+ ions and concentrating it at the boundaries of crystallites. It is noted that in this case, the morphology of crystallites changes, the short-range order of the structural unit of the lattice (Gd2O2) changes with the introduction of S2- ions into oxygen vacancies [VO]oo or the substitution of O2- anions, as a result of which the long-range order of the anionic sublattice is violated and the band gap decreases. At high concentrations of the photoluminescence activator Tb3+ 7 mol.%, radiation quenching does not occur due to the presence of the GdOF and TbOF phases. Variations of these effects with an increase in the Tb3+ concentration lead to an increase in the intensity of the emission in the green region of the 5D4->7Fj transitions and a decrease in the intensity of the emission in the blue region of the 5D3->7Fj transitions. Keywords: phosphor Gd2O2S : Tb(3-7 mol.%), real lattice structure, photoluminescence activator distribution, far infrared spectroscopy, Raman spectroscopy, XPS spectroscopy.
  1. F. Zhao, M. Yuan, W. Zhang, S. Gao, J. Am. Chem. Soc. 128, 11758 (2006)
  2. J. Nanomater. Volume. Article ID 2560436, 1-6 (2017)
  3. V.V. Bakovets, T.D. Pivovarova, I.P. Dolgovesova, I.V. Korolkov, O.V. Antonova, S.I. Kozhemyachenko. ZhOKh 88, 5, 850 (2018) (in Russian)
  4. E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov, D.Y. Jeon. Opt. Mater. 27, 559 (2004)
  5. G.V. Ananyeva, E.I. Gorokhova, V.A. Demidenko, V.A. Parfinsky, O.A. Khristich. Opt. zhurn. 72, 68 (2005) (in Russian)
  6. X.-X. Luo, W.-H. Cao, Y. Tian. Opt. Mater. 30, 351 (2007)
  7. E.I. Gorokhova, G.V. Ananyeva, V.A. Demidenko, S.V. Eronko, E.A. Oreshchenko, O.A. Khristich, P.A. Rodny. Opt. zhurn. 79, 1, 58 (2012) (in Russian)
  8. V.V. Bakovets, I.V. Yushina, O.V. Antonova, T.A. Pomelova. Optika i spektroskopiya 121, 929 (2016) (in Russian)
  9. P. Kubelka, F. Munk. Z. Techn. Phys. 12, 593 (1931)
  10. J. Tauc, R. Grigorovici, A. Vancu. Phys. Status Solidi 15, 627 (1966)
  11. D. Barreca et al. Surf. Sci. Spectra 14, 60 (2007)
  12. L.Ya. Markovsky, E.Ya. Persina, Yu.A. Omelchenko. ZhNKh 16, 2, 330 (1971) (in Russian)
  13. Kh.R. Saraee, M.D. Zaden, M. Mostajaboddavati, A.A. Kharieky. J. Electr. Mater. 45, 4806 (2016)
  14. J. Holsa, M. Leskela, L. Niinisto. Mater. Res. Bull. 14, 1403 (1979)
  15. S. Chatterjee, V. Shanker, H. Chander. Mater. Chem. Phys. 80, 719 (2003)
  16. E.I. Gorokhova, V.A. Demidenko, O.A. Khristich. J. Opt. Technol. 70, 693 (2003)
  17. A. Abreu da Silva, M.A. Cebim, M.R. Davolos. J. Lumin. 128, 1165 (2008)
  18. E.I. Gorokhova, G.V. Ananyeva, V.A. Demidenko, S.V. Eronko, E.A. Oreshchenko, O.A. Khristich, P.A. Rodny. Opt. zhurn. 79, 1, 56 (2012) (in Russian)
  19. Y. Tian, W.-He Cao, X.-X. Luo, Y. Fu. J. Alloys Comp. 433, 313 (2007)
  20. L. Hernbndez-Adame, A. Mindez-Blas, J. Ruiz-Garcna, J.R. Vega-Acosta, F.J. Medellin-Rodriguez, G. Palestino. Chem. Eng. J. 258, 136 (2014)
  21. S.-L. Lin, T.-Y. Liu, C.-L. Lo, B.-S. Wang, Y.-J. Lee, K.-Y. Lin, C.A. Chang. http://dx.doi.org/10.1016/j.jlumin.2016.01.037
  22. X. Sang, G. Xu, J. Lian, N. Wu, X. Zhang, J. He. Solid State Sci. 80, 15 (2018)
  23. M.I. Gaiduk, V.F. Zolin, L.S. Gaigerova. Spektry lyuminestsentsii evropiya. Nauka, M. (1974). 195 s.(in Russian)
  24. V.V. Bakovets, I.P. Dolgovesova, T.D. Pivovarova, L.A. Sheludyakova. FTT 63, 2147 (2021) (in Russian)
  25. S. Yokono, S. Syunij, T. Hoshina. J. Phys. Soc. Jpn. 46, 1882 (1979)
  26. J. Lian, X. Sun, J.-G. Li, B. Xiao, K. Duan. Mater. Chem. Phys. 122, 354 (2010)
  27. K.V. Shalimova. Fizika poluprovodnikov. Energoatomizdat, M. (1985). 392 s. (in Russian)
  28. Yu.L. Suponitsky, G.M. Kuzmicheva, A.A. Eliseev. Uspekhi khimii 57, 367 (1988) (in Russian)
  29. G.P. Borodulenko, A.A. Eliseev, V.A. Efremov, G.M. Kuzmicheva, I.V. Perepelkin, N.M. Ponomarev. ZhNKh 30, 2208 (1985) (in Russian)
  30. R.D. Shanon. Acta Crystall. A 32, 751 (1976)
  31. A. Garcia-Murillo, A. de J. Morales Ramirez, F. de J. Carrillo Romo, M. Garcia Hernandez, M.A. Dominguez Crespo. Mater. Lett. 63, 1631 (2009)
  32. P.R. Singh, K. Gupta, A. Pandey, A. Pandey. World J. Nano Sci. Eng. 2, 13 (2012)
  33. V.V. Bakovets, I.P. Dolgovesova, T.D. Pivovarova, M.I. Rakhmanova. FTT 62, 2147 (2020) (in Russian)
  34. V.A. Lobach. Zhurn. prikl. spektroskopii 27, 552 (1977) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru