Physics of the Solid State
Volumes and Issues
Percolation effect impact on resistive switching of structures based on nanocomposite (Co40Fe40B20)x(LiNbO3)100-x
Nikiruy K.E.1, Emelyanov A.V. 1,2, Matsukatova A.N. 1, Kukueva E.V.1, Vasiliev A.L.1, Sitnikov A.V.1,3, Demin V.A.1, Rylkov V.V. 1,4
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
3Voronezh State Technical University, Voronezh, Russia
4Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: emelyanov.andrey@mail.ru, an.matcukatova@physics.msu.ru, vvrylkov@mail.ru

PDF
Comparative studies of resistive switching (RS) effect of metal/nanocomposite/metal (M/NC/M), metal/nanocomposite/LiNbO3/metal (M/NC/LNO/M) structures based on NC (Co40Fe40B20)x(LiNbO3)100-x (x=6-20 at.%) with CoFe nanogranules 2-4 nm in size, as well as structures without a NC layer (M/LNO/M), have been carried out. It was found that the percolation conductivity in NC and presence of a thin LNO layer play a key role in the RS effect. When the metal content approaches the percolation threshold of M/NC/M structures (xp~10 at.%), low-resistance percolation nanochannels of granules are formed in structures with an embedded LNO layer, which ensure their stable RS, which, however, are noticeably suppressed as x decreases relative to xp by Delta x~1-2 at.%. Keywords: resistive switching, memristor, nanocomposite, percolation.
  1. Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang. Nature Rev. Mater. 5, 173 (2020)
  2. F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday. Nanoscale Res. Lett. 15, 90 (2020)
  3. W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan, W.i Mao, J. Yang, L. Chu, X. Li. Nano-Micro Lett. 13, 85 (2021)
  4. A.V. Emelyanov, K.E. Nikiruy, A.V. Serenko, A.V. Sitnikov, M.Yu. Presnyakov, R.B. Rybka, A.G. Sboev, V.V. Rylkov, P.K. Kashkarov, M.V. Kovalchuk, V.A. Demin. Nanotechnology 31, 045201 (2020)
  5. V.A. Demin, D.V. Nekhaev, I.A. Surazhevsky, K.E. Nikiruy, A.V. Emelyanov, S.N. Nikolaev, V.V. Rylkov, M.V. Kovalchuk. Neural Networks 134, 64 (2021)
  6. M. Zhuk, S. Zarubin, I. Karateev, Yu. Matveyev, E. Gornev, G. Krasnikov, D. Negrov, A. Zenkevich. Front. Neurosci. 14, 94 (2020)
  7. S. Shchanikov, A. Zuev, I. Bordanov, S. Danilin, V. Lukoyanov, D. Korolev, A. Belov, Y. Pigareva, A. Gladkov, A. Pimashkin, A. Mikhaylov, V. Kazantsev, A. Serb. Solitons Fractals 142, 110504 (2021)
  8. J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev. 2, 031303 (2015)
  9. A.N. Matsukatova, A.V. Emelyanov, A.A. Minnekhanov, V.A. Demin, V.V. Rylkov, P.A. Forsh, P.K. Kashkarov. Pis'ma v ZhETF 112, 379 (2020) (in Russian)
  10. A. Mikhaylov, A. Belov, D. Korolev, I. Antonov, V. Kotomina, A. Kotina, E. Gryaznov, A. Sharapov, M. Koryazhkina, R. Kryukov, S. Zubkov, A. Sushkov, D. Pavlov, S. Tikhov, O. Morozov, D. Tetelbaum. Adv. Mater. Technol. 5, 1900607 (2019)
  11. V. Mikheev, A. Chouprik, Yu. Lebedinskii, S. Zarubin, A.M. Markeev, A.V. Zenkevich, D. Negrov. Nanotechnology 31, 215205 (2020)
  12. A.S. Vedeneev, V.V. Rylkov, K.S. Napol'sky, A.P. Leont'ev, A.A. Klimenko, A.M. Kozlov, V.A. Luzanov, S.N. Nikolaev, M.P. Temiryazeva, A.S. Bugaev. Pis'ma v ZhETF 106, 6, 387 (2017) (in Russian)
  13. O.G. Kharlanov, B.S. Shvetsov, V.V. Rylkov, A.A. Minnekhanov. Phys. Rev. Appl. 17, 054035(17) (2022)
  14. G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa, M. Kozicki, S. Majumdar, M. Menghini, E. Miranda, C. Ricciardi, S. Tappertzhofen, K. Terabe, I. Valov. Adv. Mater. (2022). https://doi.org/10.1002/adma.202201248
  15. M.N. Martyshov, A.V. Emelyanov, V.A. Demin, K.E. Nikiruy, A.A. Minnekhanov, S.N. Nikolaev, A.N. Taldenkov, A.V. Ovcharov, M.Yu. Presnyakov, A.V. Sitnikov, A.L. Vasiliev, P.A. Forsh, A.B. Granovskiy, P.K. Kashkarov, M.V. Kovalchuk, V.V. Rylkov. Phys. Rev. Appl. 14, 034016 (2020)
  16. V.V. Rylkov, A.V. Emelyanov, S.N. Nikolaev, K.E. Nikiruy, A.V. Sitnikov, E.A. Fadeev, V.A. Demin, A.B. Granovsky. ZhETF 158, 1( 7), 164 (2020) (in Russian)
  17. V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasil'ev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev. ZhETF 153, 424 (2018) (in Russian)
  18. B.A. Aronzon, D.Yu. Kovalyov, V.V. Rylkov. FTP 39, 844 (2005) (in Russian)
  19. A.A. Gismatulin, V.N. Kruchinin, V.A. Gritsenko, I.P. Prosvirin, T.-J. Yen, A. Chin. Appl. Phys. Lett. 114, 033503 (2019)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru