Synthesis features, structure, magnetometry and NMR spectroscopy of nanowires of various types
Zagorsky D. L.1, Doludenko I. M.1, Khaibullin R. I. 2, Chuprakov S. A.3, Gippius A. A.4,5, Zhurenko S. V.4, Tkachev A. V.4, Cherkasov D. A.6, Zhigalina O. M.1,7, Khmelinin D. N.1, Kanevsky V. M.1, Muslimov A. E.1, Panov D. V.1, Blinov I. V.3
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
2Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
3M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
4Lomonosov Moscow State University, Moscow, Russia
5Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
6Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
7Bauman Moscow State Technical University, Moscow, Russia
Email: rikkfti@mail.ru, dzagorskiy@gmail.com

PDF
Various types of nanowires obtained by matrix synthesis - homogeneous (from iron) and heterogeneous (layered) - have been studied. A technique for obtaining arrays of layered nanowires with alternating thin layers of magnetic and non-magnetic metals (Co/Cu, Ni/Cu) has been developed and described. Microscopy methods (SEM and TEM with elemental analysis) have been used to study the topography of the resulting structures, the diameters of nanowires and the thicknesses of individual layers, and the features of interlayer interfaces. Methods of synthesis of nanowires with thin layers and clear boundaries are proposed - dilution of the electrolyte, use of a reference electrode, control of the leaked charge. Layered nanowires have been studied by magnetometry methods and it has been shown that the magnetic properties of an array of layered nanowires (in particular, the direction of the axis of light magnetization in the Co/Cu-NP array) depend not only on the aspect ratio of the magnetic layer, but also on the ratio of the thickness of the magnetic metal layer to the thickness of a non-magnetic spacer (copper layer). The nuclear magnetic resonance (NMR) method was used to study two types of nanowires. The NMR method (on 59-Co nuclei) studied the layer structures of Co/Cu: it is shown that in nanowires with layers of smaller thickness (and, accordingly, with a large contribution of interfaces), a large proportion of Co atoms coordinated by Cu atoms is observed. The high proportion of atoms coordinated by copper suggests that an admixture of copper enters the cobalt layers. Homogeneous iron nanowires (NMR on 57-Fe nuclei) were compared with bulk iron samples. A shift of the line towards high frequencies (by 0.3 MHz) was detected, indicating an increase in the field by about 0.2 T. A significant broadening of the line and a decrease in the spin-lattice relaxation time may indicate a significant variation in the local magnetic field values. Keywords: nanowires, matrix synthesis, microscopy, elemental analysis, magnetic properties, NMR.
  1. H. Masuda, K. Fukuda. Sci. 268, 2321, 1466 (1995)
  2. C.R. Martin. Science 266, 5193, 1961 (1994)
  3. N. Lupu. Electrodeposited nanowires and their applications. InTech, Croatia (2010). 236 p
  4. M. Vazquez. Magnetic nano- and microwires: Design, synthesis, properties and applications. Elsevier-Woodhead Publishing, Amsterdam (2015). 847 p
  5. A.A. Davydov, V.M. Volgin. Elektrokhimiya, 52, 9, 905 (2016) (in Russian)
  6. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Pettroff. Phys. Rev. Lett. 61, 21, 2472 (1988)
  7. A. Fert, L. Piraux. J. Magn. Magn. Mater. 200, 1-3, 338 (1999)
  8. H. Kamimura, M. Hayashida, T. Ohgai. Nanomater. 10, 1, 5 (2020)
  9. Y.P. Ivanov, A. Chuvilin, S. Lopatin, J. Kosel. ACS Nano 10, 5, 5326 (2016)
  10. D. Ceballos, E. Cisternas, E.E. Vogel. J. Magn. Magn. Mater. 451, 676 (2018)
  11. S. Moraes, D. Navas, F. Beron, M.P. Proenca, K.R. Pirota, C.T. Sousa, J.P. Araujo. Nanomater. 8, 7, 490 (2018)
  12. D.A. Cherkasov, D.L. Zagorsky, R.I. Khaibullin, A.E. Muslimov, I.M. Doludenko. FTT 62, 9, 1531 (2020) (in Russian)
  13. Yu.V. Gulyaev, S.G. Chigarev, A.I. Panas, E.A. Vilkov, N.A. Maksimov, D.L. Zagorsky, A.S. Shatalov. Pis'ma v ZhTF, 45, 6, 27 (2019) (in Russian)
  14. I.M. Doludenko, A.V. Mikheev, I.A. Burmistrov, D.B. Trushina, T.N. Borodina, T.V. Bukreeva, D.L. Zagorsky. ZhTF 90, 9, 1435 (2020) (in Russian)
  15. K.V. Frolov, D.L. Zagorsky, I.S. Lyubutin, M.A. Chuev, I.V. Perunov, S.A. Bedin, A.A. Lomov, V.V. Artemov, S.N. Sulyanov. Pis'ma v ZhTF, 105, 5, 297 (2017) (in Russian)
  16. D.L. Zagorsky, K.V. Frolov, S.A. Bedin, I.V. Perunov, M.A. Chuev, A.A. Lomov, I.M. Doludenko. FTT 60, 11, 2075 (2018) (in Russian)
  17. V. Scarani, B. Doudin, J-P. Ansermet. J. Magn. Magn. Mater. 205, 241 (1999)
  18. S. Chuprakov, I. Blinov, D. Zagorsky, D. Cherkasov. FMM 122, 9, 933 (2021) (in Russian)
  19. D.K. Nurgaliev, P.G. Yasonov. Koertsitivny spektrometr (in Russian). The Russian patent for the utility model N 81805. Bulletin of PHIPS No 9 (2009)
  20. S.V. Zhurenko, A.V. Tkachev, A.V. Gunbin, A.A. Gippius. Instruments Exp. Tech. 64, 3, 427 (2021)
  21. A.A. Gippius, S.V. Zhurenko, A.V. Tkachev, Eksperimentalnaya nizkotemperaturnaya YaMR-spektroskopiya kondensirovannogo sostoyaniya (in Russian). MGU, M. (2021). 116 s. ISBN 978-5-8273-0191-4 (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru