Highly efficient generation of squeezed states of light based on Laguerre-Gaussian modes in a cavity
Bashmakova E. N.1, Vashukevich E. A.1, Golubeva T. Yu. 1, Golubev Yu. M. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: bashmakova.elizaveta@mail.com

PDF
Today, the efficient generation of squeezed states of light seems to be a significant practical problem for various quantum-optical and information applications. In this paper, we investigate the possibility of increasing the efficiency of the generation of states based on the Laguerre-Gaussian light modes in the parametric down conversion due to the optimal choice of the cavity configuration. Analyzing the Heisenberg-Langevin equations for the eigenmodes of the system, we estimate the influence of the geometric parameters of the pump beam and the idler and signal beams on the efficiency of generation of squeezed states and on the degree of squeezing. The calculation for a finite number of modes has shown that the highest theoretically possible degree of squeezing in the system is 15.85 dB. Keywords: squeezed light, Laguerre-Gaussian modes, orbital angular momentum, optimization of PDC geometric parameters.
  1. Loudon R., Knight P. // J. Mod. Opt. 1987. V. 34. P. 709. doi 10.1080/09500348714550721
  2. Andersen U.L., Gehring T., Marquardt C., Leuchs G. // Physica Scripta. 2016. V. 91. P. 053001. doi 10.1088/0031-8949/91/5/053001
  3. Braunstein S.L., van Loock P. // Rev. Mod. Phys. 2005. V. 77. P. 513. doi 10.1103/RevModPhys.77.513
  4. Toth G., Apellaniz I. // J. of Physics. A: Mathematical and Theoretical. 2014. V. 47. P. 424006. doi 610.1088/1751-8113/47/42/424006
  5. Armstrong S., Yukawa M., Ukai R., Yoshikawa J.-ichi, Yonezawa H., van Loock P., Furusawa A. // International Nano-Optoelectronics Workshop, 2008. P. 225--226. doi 10.1109/INOW.2008.4634519
  6. Raussendorf R., Briegel H.J. // Phys. Rev. Lett. 2001. V. 86. P. 5188. doi 10.1103/PhysRevLett.86.5188
  7. Briegel H., Browne D., Dur W., Raussendorf R., Nest M. // Nat. Phys. 2009. V. 5. P. 19. doi 10.1038/nphys1157
  8. Milne D.F., Korolkova N.V. // Phys. Rev. A. 2012. V. 85. P. 032310. doi 10.1103/PhysRevA.85.032310
  9. Hui Sun L., qin Chen Y., Xiang Li G. // Opt. Express. 2012. V. 20. P. 3176. doi 10.1364/OE.20.003176
  10. Houhou O., Aissaoui H., Ferraro A. // Phys. Rev. A. 2015. V. 92. P. 063843. doi 10.1103/PhysRevA.92.063843
  11. Yokoyama S., Ukai R., Armstrong S.C., Sornphiphatphong C., Kaji T., Suzuki S., Yoshikawa J.-i., Yonezawa H., Menicucci N.C., Furusawa A. // Nature Photonics. 2013. V. 7. P. 982. doi 10.1038/nphoton.2013.287
  12. Pinel O., Jian P., de Araujo R.M., Feng J., Chalopin B., Fabre C., Treps N. // Phys. Rev. Lett. 2012. V. 108. P. 083601. doi 10.1103/PhysRevLett.108.083601
  13. Knill E., Laflamme R., Milburn G. // Nature. 2001. V. 409. P. 46. doi 10.1038/35051009
  14. Menicucci N.C. // Phys. Rev. Lett. 2014. V. 112. P. 120504. doi 10.1103/PhysRevLett.112.120504
  15. Mehmet H., Vahlbruch M., Danzmann K., Schnabel R. // Phys. Rev. Lett. 2016. V. 117. P. 110801. doi 10.1103/PhysRevLett.117.110801
  16. van Enk S.J., Nienhuis G. // EPL. 1994. V. 25. P. 497. doi 10.1209/0295-5075/25/7/004f
  17. Nienhuis G., Allen L. // Phys. Rev. A. 1993. V. 48. P. 656. doi 10.1103/PhysRevA.48.656
  18. Franke-Arnold S., Barnett S.M., Padgett M.J., Allen L. // Phys. Rev. A. 2002. V. 65. P. 033823. doi 10.1103/PhysRevA.65.033823
  19. Torres J.P., Alexandrescu A., Torner L. // Phys. Rev. A. 2003. V. 68. P. 050301. doi 10.1103/PhysRevA.68.050301
  20. Vashukevich E.A., Losev A.S., Golubeva T.Y., Golubev Y.M. // Phys. Rev. A. 2019. V. 99. P. 023805. doi 10.1103/PhysRevA.99.023805
  21. Medeiros de Araujo R., Roslund J., Cai Y., Ferrini G., Fabre C., Treps N. // Phys. Rev. A. 2014. V. 89. P. 053828. doi 10.1103/PhysRevA.89.053828
  22. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. // Phys. Rev. A. 1992. V. 45. P. 8185. doi 10.1103/PhysRevA.45.8185
  23. Roslund J., de Araujo R., Jiang S., Fabre C., Treps N. // Nature Photonics. 2014. V. 8. P. 109. doi 10.1038/nphoton.2013.340
  24. Huang H., Ren Y., Xie G., Yan Y., Yue Y., Ahmed N., Lavery M.P.J., Padgett M.J., Dolinar S., M. Tur, Willner A.E. // Opt. Lett. 2014. V. 39. P. 1689. doi 10.1364/OL.39.001689
  25. Ruffato G., Massari M., Romanato F. // Scientific Reports. 2016. V. 6. P. 1. doi 10.1038/srep24760
  26. Powers P.E. Field Guide to Nonlinear Optics. SPIE Press Field Guide FG29. SPIE Press, 2013
  27. Rosanov N.N., Arkhipov M.V., Arkhipov R.M., Veretenov N.A., Pakhomov A.V., Fedorov S.V. //Optics and Spectroscopy. 2019. V. 127. P. 77. doi 10.1134/S0030400X19070221
  28. Volyar A.V., Bretsko M.V., Akimova Ya.E., Egorov Yu.A. // Computer Optics. 2019. V. 43. P. 14. doi 10.18287/2412-6179-2019-43-1-14-24
  29. Rosanov N.N. // Optics and Spectroscopy. 2010. V. 109. P. 123. doi 10.1134/S0030400X10070209
  30. Veretenov N.A., Fedorov S.V., Rosanov N.N. // Phys. Rev. Lett. 2017. V. 119. P. 263901 doi 10.1103/PhysRevLett.119.263901

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru