Highly efficient generation of squeezed states of light based on Laguerre-Gaussian modes in a cavity
Bashmakova E. N.1, Vashukevich E. A.1, Golubeva T. Yu. 1, Golubev Yu. M. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: bashmakova.elizaveta@mail.com
Today, the efficient generation of squeezed states of light seems to be a significant practical problem for various quantum-optical and information applications. In this paper, we investigate the possibility of increasing the efficiency of the generation of states based on the Laguerre-Gaussian light modes in the parametric down conversion due to the optimal choice of the cavity configuration. Analyzing the Heisenberg-Langevin equations for the eigenmodes of the system, we estimate the influence of the geometric parameters of the pump beam and the idler and signal beams on the efficiency of generation of squeezed states and on the degree of squeezing. The calculation for a finite number of modes has shown that the highest theoretically possible degree of squeezing in the system is 15.85 dB. Keywords: squeezed light, Laguerre-Gaussian modes, orbital angular momentum, optimization of PDC geometric parameters.
- Loudon R., Knight P. // J. Mod. Opt. 1987. V. 34. P. 709. doi 10.1080/09500348714550721
- Andersen U.L., Gehring T., Marquardt C., Leuchs G. // Physica Scripta. 2016. V. 91. P. 053001. doi 10.1088/0031-8949/91/5/053001
- Braunstein S.L., van Loock P. // Rev. Mod. Phys. 2005. V. 77. P. 513. doi 10.1103/RevModPhys.77.513
- Toth G., Apellaniz I. // J. of Physics. A: Mathematical and Theoretical. 2014. V. 47. P. 424006. doi 610.1088/1751-8113/47/42/424006
- Armstrong S., Yukawa M., Ukai R., Yoshikawa J.-ichi, Yonezawa H., van Loock P., Furusawa A. // International Nano-Optoelectronics Workshop, 2008. P. 225--226. doi 10.1109/INOW.2008.4634519
- Raussendorf R., Briegel H.J. // Phys. Rev. Lett. 2001. V. 86. P. 5188. doi 10.1103/PhysRevLett.86.5188
- Briegel H., Browne D., Dur W., Raussendorf R., Nest M. // Nat. Phys. 2009. V. 5. P. 19. doi 10.1038/nphys1157
- Milne D.F., Korolkova N.V. // Phys. Rev. A. 2012. V. 85. P. 032310. doi 10.1103/PhysRevA.85.032310
- Hui Sun L., qin Chen Y., Xiang Li G. // Opt. Express. 2012. V. 20. P. 3176. doi 10.1364/OE.20.003176
- Houhou O., Aissaoui H., Ferraro A. // Phys. Rev. A. 2015. V. 92. P. 063843. doi 10.1103/PhysRevA.92.063843
- Yokoyama S., Ukai R., Armstrong S.C., Sornphiphatphong C., Kaji T., Suzuki S., Yoshikawa J.-i., Yonezawa H., Menicucci N.C., Furusawa A. // Nature Photonics. 2013. V. 7. P. 982. doi 10.1038/nphoton.2013.287
- Pinel O., Jian P., de Araujo R.M., Feng J., Chalopin B., Fabre C., Treps N. // Phys. Rev. Lett. 2012. V. 108. P. 083601. doi 10.1103/PhysRevLett.108.083601
- Knill E., Laflamme R., Milburn G. // Nature. 2001. V. 409. P. 46. doi 10.1038/35051009
- Menicucci N.C. // Phys. Rev. Lett. 2014. V. 112. P. 120504. doi 10.1103/PhysRevLett.112.120504
- Mehmet H., Vahlbruch M., Danzmann K., Schnabel R. // Phys. Rev. Lett. 2016. V. 117. P. 110801. doi 10.1103/PhysRevLett.117.110801
- van Enk S.J., Nienhuis G. // EPL. 1994. V. 25. P. 497. doi 10.1209/0295-5075/25/7/004f
- Nienhuis G., Allen L. // Phys. Rev. A. 1993. V. 48. P. 656. doi 10.1103/PhysRevA.48.656
- Franke-Arnold S., Barnett S.M., Padgett M.J., Allen L. // Phys. Rev. A. 2002. V. 65. P. 033823. doi 10.1103/PhysRevA.65.033823
- Torres J.P., Alexandrescu A., Torner L. // Phys. Rev. A. 2003. V. 68. P. 050301. doi 10.1103/PhysRevA.68.050301
- Vashukevich E.A., Losev A.S., Golubeva T.Y., Golubev Y.M. // Phys. Rev. A. 2019. V. 99. P. 023805. doi 10.1103/PhysRevA.99.023805
- Medeiros de Araujo R., Roslund J., Cai Y., Ferrini G., Fabre C., Treps N. // Phys. Rev. A. 2014. V. 89. P. 053828. doi 10.1103/PhysRevA.89.053828
- Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. // Phys. Rev. A. 1992. V. 45. P. 8185. doi 10.1103/PhysRevA.45.8185
- Roslund J., de Araujo R., Jiang S., Fabre C., Treps N. // Nature Photonics. 2014. V. 8. P. 109. doi 10.1038/nphoton.2013.340
- Huang H., Ren Y., Xie G., Yan Y., Yue Y., Ahmed N., Lavery M.P.J., Padgett M.J., Dolinar S., M. Tur, Willner A.E. // Opt. Lett. 2014. V. 39. P. 1689. doi 10.1364/OL.39.001689
- Ruffato G., Massari M., Romanato F. // Scientific Reports. 2016. V. 6. P. 1. doi 10.1038/srep24760
- Powers P.E. Field Guide to Nonlinear Optics. SPIE Press Field Guide FG29. SPIE Press, 2013
- Rosanov N.N., Arkhipov M.V., Arkhipov R.M., Veretenov N.A., Pakhomov A.V., Fedorov S.V. //Optics and Spectroscopy. 2019. V. 127. P. 77. doi 10.1134/S0030400X19070221
- Volyar A.V., Bretsko M.V., Akimova Ya.E., Egorov Yu.A. // Computer Optics. 2019. V. 43. P. 14. doi 10.18287/2412-6179-2019-43-1-14-24
- Rosanov N.N. // Optics and Spectroscopy. 2010. V. 109. P. 123. doi 10.1134/S0030400X10070209
- Veretenov N.A., Fedorov S.V., Rosanov N.N. // Phys. Rev. Lett. 2017. V. 119. P. 263901 doi 10.1103/PhysRevLett.119.263901
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.