Isotope Effects in the Spectra of Hydrogen-Bonded Complexes. Calculation of the Structure and Vibrational Absorption Spectra of the H2O...HF, H2O...DF, D2O...HF, and D2O...DF Complexes
Bulychev V. P. 1, Buturlimova M. V. 1, Tokhadze K. G. 1
1St. Petersburg State University, St. Petersburg, Russia

PDF
The frequencies and intensities of IR absorption bands of the H2O...HF, H2O...DF, D2O...HF, and D2O...DF hydrogen-bonded complexes are calculated using the second-order vibrational perturbation theory. The MP2/aug-cc-pVTZ method with the basis set superposition error taken into account is used to calculate the electronic wave functions in determining the equilibrium configuration, the potential energy and dipole moment surfaces of these complexes, as well as in calculating spectral parameters. It is shown that upon complexation the frequencies and intensities of the stretching vibration of HF (DF) molecules and the intensities of stretching vibrations of H2O (D2O) molecules change most significantly. A variational calculation of librational motion of the water molecule in the two-well potential explained the reason for the higher value of the fundamental transition frequency of the ν1(H-F) mode as compared to the frequency of this mode upon hot transition from the first excited librational state. The dependence of the intermode anharmonic interaction on isotope substitution was analyzed. Keywords: hydrogen bond, calculations of spectra of molecular complexes, anharmonic interactions, isotope effects.
  1. Preller M., Grunenberg J., Bulychev V.P., Bulanin M.O. // J. Chem. Phys. 2011. V. 134. P. 174302
  2. Bulychev V.P., Svishcheva E.A., Tokhadze K.G. // Spectrochim. Acta A. 2014. V. 117. P. 679
  3. Bulychev V.P., Buturlimova M.V., Tokhadze K.G. // J. Chem. Phys. 2018. V. 149. P. 104306
  4. Bevan J.W., Kisiel Z., Legon A.C., Millen D.J, Rogers S.C. // Proc. Roy. Soc. London A. 1980. V. 372. P. 441--451
  5. Kisiel Z., Legon A.C., Millen D.J. // Proc. Roy. Soc. London A.1982. V. 381. P. 419--442
  6. Thomas R.K. // Proc. Roy. Soc. London A. 1971. V. 325. P. 133--149
  7. Thomas R.K. // Proc. Roy. Soc. London A. 1975. V. 344. P. 579--592
  8. Andrews L., Johnson G.L. // J. Chem. Phys. 1983. V. 79. P. 3670
  9. Bulychev V.P., Gromova E.I., Tokhadze K.G. // Opt. i spektr. 2004. V. 96. P. 774. (in Russian)
  10. Bulychev V.P., Grigoriev I.M., Gromova E.I., Tokhadze K.G. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 2266
  11. Goubet M., Madebene B., Lewerenz M. // Chimia. 2004. V. 58. P. 291
  12. Szczesniak M.M., Scheiner S., Bouteiller Y. // J. Chem. Phys. 1984. V. 81. P. 5024
  13. Latajka Z., Scheiner S. // J. Comp. Chem. 1987. V. 8. P. 674
  14. Novoa J.J., Planas M., Whangbo M.-H., Williams J.M. // Chem. Phys. 1994. V. 186. P. 175
  15. Demaison J., Lievin J. // Mol. Phys. 2008. V. 106. P. 1249
  16. Sexton Th.M., Howard J.C., Tschumper G.S. // J. Phys. Chem. A. 2018. V. 122. P. 4902
  17. Loreau J., Kalugina Yu.N., Faure A., van der Avoird A., Lique F. // J. Chem. Phys. 2020. V. 153. P. 214301
  18. Barone V. // J. Chem. Phys. 2005. V. 122. P. 014108
  19. Bloino J. // J. Phys. Chem. A. 2015. V. 119. P. 5269
  20. Gaussian 16, Revision A.03. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian, Inc., Wallingford CT, 2016
  21. Bulychev V.P., Engalycheva E.A., Tokhadze K.G. // Opt. i spektr. 2019. V. 126. P. 404. (in Russian)
  22. Oswald S., Suhm M.A. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 18799.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru