Effect of graphene platelets pullout from ceramic matrix on the fracture toughness of ceramic/graphene composites
Bobylev S. V.
1,21Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: bobylev.s@gmail.com
A theoretical model is proposed that describes the effect of graphene platelets pullout on the fracture toughness of ceramic/graphene composites. The dependences of fracture toughness on the graphene concentration and the dimensions of graphene platelets are calculated using a yttria-stabilized zirconia (YSZ)/graphene composite as an example. Calculations predict that if graphene platelets pullout from ceramic matrix is the dominant mechanism, then the maximum fracture toughness is achieved in the case of the longest and thinnest possible graphene platelets, provided that the latter have sufficient strength and adhesion to the matrix. The model shows a good correlation with experimental data at low graphene concentrations. Keywords: composites, graphene, ceramics, cracks, fracture toughness.
- I.A. Ovid'ko. Rev. Adv. Mater. Sci. 34, 1, 19 (2013)
- H. Porwal, S. Gresso, M.J. Reece. Adv. Appl. Ceram. 112, 8, 443 (2013)
- A. Centeno, V.G. Rocha, B. Alonso, A. Fernandez, C.F. Gutierres-Gonzalez, R. Torrecillas, A. Zurutuza. J. Eur. Ceram. Soc. 33, 15--16, 3201 (2013)
- L.S. Walker, V.R. Marroto, M.A. Rafiee, N. Koratkar, E.L. Corral. ACS Nano 5, 4, 3182 (2011)
- B. Lee, M.Y. Koo, S.H. Jin, K.T. Kim, S.H. Hong. Carbon 78, 212 (2014)
- A. Nieto, D. Lahiri, A. Agarwal. Mater. Sci. Eng. A 582, 338 (2013)
- J. Lui, H. Yan, K. Jiang. Ceram. Int. 39, 6, 6215 (2013)
- H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhy, M.J. Reece. Carbon 64, 359 (2013)
- J.H. Shin, S.H. Hong. J. Eur. Ceram. Soc. 34, 5, 1297 (2014)
- J. Liu, H. Guo, Y. Su, L. Wang, L. Wei, G. Yang, Y. Yang, K. Jiang. Mater. Sci. Eng. A 688, 70 (2017)
- L. Zhang, X.G. Zhang, Y. Chen, J.N. Su, W.W. Liu, T.H. Zhang, Y.T. Wang. Appl. Phys. Lett. 105, 16, 161908 (2014)
- C. Ramirez, M.I. Osendi. Ceram. Int. 40, 7, 11187 (2014)
- I.A. Ovid'ko, A.G. Sheinerman. Rev. Adv. Mater. Sci. 43, 1/2, 52 (2015)
- G.H. Campbell, M. Ruhle, B.J. Dalgleish, A.G. Evans. J. Am. Ceram. Soc. 73, 3, 521 (1990)
- Y.S. Chou, D.J. Green. J. Am. Ceram. Soc. 76, 8, 1985 (1993)
- I. Ahmad, M. Islam, H.S. Abdo, T. Subhani, K.A. Khalil, A.A. Almajid, B. Yazdani, Y. Zhu. Mater. Des. 88, 1234 (2015)
- S.V. Bobylev, A.G. Sheinerman. Rev. Adv. Mater. Sci. 57, 1, 54 (2018)
- Y. Shao, H.-P. Zhao, X.-Q. Feng, H. Gao. J. Mech. Phys. Solids 60, 8, 1400 (2012)
- O. Tapaszto, L. Tapaszto, H. Lemmel, V. Puchy, J. Dusza, C. Balazsi, K. Balazsi. Ceram. Int. 42, 1, 1002 (2016)
- I.D. Muhammad, M. Awang, O. Mamat. Adv. Mater. Res. 845, 387 (2014)
- X. Wang, J. Zhao, E. Cui, X. Tian, Z. Sun. Nanomaterials 11, 6, 1374 (2021)
- P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, D.A. Muller. Nature 469, 389 (2011)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.