Defect structure formation in quartz single crystal at the early stages of deformation
Damaskinskaya E. E. 1, Hilarov V. L. 1, Nosov Yu.G.1, Podurets K. M 2, Kaloyan A. A. 2, Korost D. V. 3, Panteleev I. A. 4
1Ioffe Institute, St. Petersburg, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
4Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, Perm, Russia
Email: Kat.Dama@mail.ioffe.ru

PDF
Accumulation of defects in the synthetic quartz single crystal has been investigated at the early stages of deformation. Process is studied with the help of three independent nondestructive techniques, namely: acoustic emission, X-ray computed tomography and synchrotron radiation topography. It is shown that results obtained by the three techniques are consistent with each other, allow detecting the area of defect formation and, what is more important, to match acoustic emission parameters with the ones of defects. This result is of practical importance, since it makes it possible to further identify areas of fracture growth and estimate their size in situ only by analyzing acoustic emission data in cases where the use of other control methods is impossible. Keywords: acoustic emission, X-ray computed tomography, synchrotron radiation topography (X-ray Diffraction Imaging), quartz single crystal, defects volume.
  1. X. Lei, S. Ma. Earthquake Sci. 27, 6, 627 (2014)
  2. A. Schmidt-Mumm. Phys. Chem. Minerals 17, 545 (1991)
  3. P.W.J. Glover, P. Baud, M. Darot, P.G. Meredith, S.A. Boon, M. LeRavalec, S. Zoussi, T. Reuschle. Int'l J. Geophys. 120, 3, 775 (1995)
  4. J. Gasc, A. Schubnel, F. Brunet, S. Guillon, H.-J. Mueller, C. Lathe. Phys. Earth. Planetary Interiors 189, 3-4, 121 (2011)
  5. V.I. Vettegren, V.S. Kuksenko, P.I. Shcherbakov. Tech. Phys. 56, 4, 577 (2011)
  6. K. Peng, S. Shi, Q. Zou, J. Mou, J. Yu, Y. Zhang, Y. Cheng. Energy Sci. Eng. 8, 9, 3117 (2020)
  7. S.G. Shah, J.M. Chandra Kishen. Eng. Fracture Mech. 87, 1, 36 (2012)
  8. S. Yuyama, Z.-W. Li, M. Yoshizawa, T. Tomokiyo, T. Uomoto. NDT \& E Int'l, 34, 6, 381 (2001)
  9. Y. Seo, Y.R. Kim. KSCE J. Civil Eng. 12, 4, 237 (2008)
  10. J. Zhang. Hindawi. Shock Vibration.2018, Article ID 3057628, (2018)
  11. Sintez materialov / Ed. by B.A. Dorogovin. 2-nd ed. VNIISIMS (2000). Vol. 1. 642 p. (in Russian)
  12. E.E. Damaskinskaya, V.L. Gilyarov, I.A. Panteleyev, D.R. Gafurova, D.I. Frolov. FTT 60, 9, 1775 (2018) (in Russian)
  13. T. Toth, R. Hudak. Acta Mech. Slovaca 17, 4, 40 (2013)
  14. I.L. Shul'pina, I.A. Prokhorov. Crystallogr. Rep. 57, 661 (2012)
  15. A.R. Lang. Nature 220, 652 (1968)
  16. L.I. Tsinober, V.E. Khadzhi, L.A. Gordienko, L.T. Litvin. In: Rost kristallov. Nauka, M. (1977). Vol. 12. P. 75 (in Russian)
  17. V. Lerche, P. Dornfelder, J. Hartwig. Phys. Status Solidi A 128, 2, 269 (1991)
  18. Y. Epelboin, A. Authier. Acta Crystallogr. A 39, 767 (1983)
  19. C.A. Schneider, W.S. Rasband, K.W. Eliceiri. Nature Meth. 9, 7, 671 (2012)
  20. A.A. Kaloyan, K.M. Podurets, I.A. Prokhorov, E.S. Kovalenko, I.Zh. Bezbakh, A.O. Okunev, A.I. Gribenyukov, G.A. Verozubova. Crystal Res. Technol. 53, 11, 1800154 (2018)
  21. D. Lubbert, T. Baumbach, J. Hartwig, E. Boller, E. Pernot. Nucl. Instrum. Meth. Phys. Res. B 160, 4, 521 (2000)
  22. E.E. Damaskinskaya, I.A. Panteleyev, D.V. Korost, K.A. Damaskinsky. FTT 63, 1, 103 (2021) (in Russian)
  23. G.V. Kleshchev, I.V. Kabanovitch, L.N. Cherny. Dokl. AN SSSR 174, 3, 585 (1967) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru