Multicalorics --- new materials for energy and straintronics (R e v i e w)
Amirov A.A.1,2, Tishin A. M.3, Pakhomov O.V.4
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Immanuel Kant Baltic Federal University, Kaliningrad, Russia
3Lomonosov Moscow State University, Moscow, Russia
4 ITMO University, St. Petersburg, Russia
Email: amiroff_a@mail.ru, tishin@amtc.org

PDF
The terms "multicaloric effect" and "multicaloric" are relatively new concepts and combine the phenomena and materials associated with the coexistence of conventional caloric effects under the action of external forces of various nature (magnetic field, electric field, mechanical action). Nowadays, caloric materials remain in the focus of attention of researchers, and approaches based on the use of the multicaloric effect are considered as one of the ways to improve the efficiency of conventional solid-state cooling systems. Of particular interest from a fundamental point of view are the cross effects observed under the combined external stimulus, as well as the nature of the relationship between magnetic, electrical, thermophysical properties and structure under such actions. In this review, the theoretical foundations of the multicaloric effect are considered and an attempt is made to systematize multicaloric materials. Applied aspects of multicalorics are considered separately, and various experimental approaches to the study of their properties are presented. The presented review will be of interest to a wide range of specialists involved in the study of materials with caloric effects (magnetocaloric, electrocaloric, mechanocaloric), as well as those who are searching for new functional materials. Keywords: magnetocaloric effect, electrocaloric effect, elastocaloric effect, barocaloric effect, multicaloric effect, multiferroics, multicalorics, magnetoelectric composites.
  1. A. Kitanovski, J. Tuv sek, U. Tomc, U. Plaznik, M. Ov zbolt, A. Poredov s. Magnetocaloric energy conversion --- From theory to applications (2015). https://www.springer.com/gp/book/9783319087405
  2. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch. Adv. Energy Mater. 9, 1970130 (2019). DOI: 10.1002/aenm.201970130
  3. A.M. Tishin, Y.I. Spichkin. The magnetocaloric effect and its applications. CRC Press, Taylor andd Francis Group (2016). DOI: 10.1887/0750309229
  4. A. Greco, C. Masselli. Magnetochemistry 6, (2020). DOI: 10.3390/magnetochemistry6040067
  5. C. Cazorla. Appl. Phys. Rev. 6, 041316 (2019). DOI: 10.1063/1.5113620
  6. E. Stern-Taulats, T. Castan, L. Manosa, A. Planes, N.D. Mathur, X. Moya. MRS Bull. 43, 295 (2018). DOI: 10.1557/mrs.2018.72
  7. A.A. Amirov. Chelyabinsk Phys. Math. J. 6, 78 (2021). DOI: 10.47475/2500-0101-2021-1610 6
  8. M.M. Vopson. Phys. B: Condens. Matter. 513, 103 (2017). DOI: 10.1016/j.physb.2017.02.034
  9. L. Manosa, D. Gonzalez-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, M. Acet. Nature Mater. 9, 478 (2010). DOI: 10.1038/nmat2731
  10. A. Planes, T. Castan, A. Saxena. Phil. Mag. 94, 1893 (2014). DOI: 10.1080/14786435.2014.899438
  11. E. Stern-Taulats, T. Castan, A. Planes, L.H. Lewis, R. Barua, S. Pramanick, S. Majumdar, L. Manosa. Phys. Rev. B. 95, 104424 (2017). DOI: 10.1103/PhysRevB.95.104424
  12. M.M. Vopson. Solid State Commun. 152, 2067 (2012). DOI: 10.1016/j.ssc.2012.08.016
  13. A.S. Starkov, I.A. Starkov. ZhETF 146, 297 (2015) (in Russian). DOI: 10.7868/s0044451014080082
  14. I.N. Flyorov, E.A. Mikhalyova, M.V. Gorev, A.V. Kartashev. FTT 53, 421 (2015) (in Russian)
  15. A.P. Pyatakov, A.K. Zvezdin. Phys.-Usp. 55, 557 (2012). DOI: 10.3367/ufne.0182.201206b.0593
  16. A.K. Zvezdin, A.P. Pyatakov. Usp. Fiz. Nauk. 174, 465 (2004). DOI: 10.3367/UFNr.0174.200404n.0465
  17. N.A. Spaldin. MRS Bull. 42, 385 (2017). DOI: 10.1557/mrs.2017.86
  18. M.M. Vopson. J. Phys. D 46, 345304 (2013). DOI: 10.1088/0022-3727/46/34/345304
  19. A.A. Amirov, I.I. Makoed, D.M. Yusupov. Chelyabinsk Phys. Math. J. 5, 2, 140 (2020). DOI: 10.24411/2500-0101-2020-15201
  20. T. Gottschall, A. Gracia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Manosa, A. Planes, K.P. Skokov, O. Gutfleisch. Nature Mater. 17, 929 (2018). DOI: 10.1038/s41563-018-0166-6
  21. Y. Liu, L.C. Phillips, R. Mattana, M. Bibes, A. Barthelemy, B. Dkhil. Nature Commun. 7, (2016). DOI: 10.1038/ncomms11614
  22. Q.B. Hu, J. Li, C.C. Wang, Z.J. Zhou, Q.Q. Cao, T.J. Zhou, D.H. Wang, Y.W. Du. Appl. Phys. Lett. 110 (2017). DOI: 10.1063/1.4984901
  23. H. Ursic, V. Bobnar, B. Malic, C. Filipic, M. Vrabelj, S. Drnovsek, Y. Jo, M. Wencka, Z. Kutnjak. Sci. Rep. 6 (2016). DOI: 10.1038/srep26629
  24. M. Balli, B. Roberge, P. Fournier, S. Jandl. Crystals 7 (2017). DOI: 10.3390/cryst7020044
  25. B. Sattibabu, A.K. Bhatnagar, K. Vinod, A. Mani. Phys. B: Condens. Matter. 514, 37 (2017). DOI: 10.1016/j.physb.2017.03.024
  26. M. Balli, P. Fournier, S. Jandl, M.M. Gospodinov. J. Appl. Phys. 115, 173904 (2014). DOI: 10.1063/1.4874943
  27. K. Dey, A. Indra, S. Majumdar, S. Giri. J. Magn. Magn. Mater. 435, 15 (2017). DOI: 10.1016/j.jmmm.2017.03.068
  28. I.I. Makoed, A.A. Amirov, N.A. Liedienov, A.V. Pashchenko, K.I. Yanushkevich. Solid State Sci. 95, 105920 (2019). DOI: 10.1016/j.solidstatesciences.2019.06.009
  29. I.I. Makoed, A.A. Amirov, N.A. Liedienov, A.V. Pashchenko, K.I. Yanushkevich, D.V. Yakimchuk, E.Y. Kaniukov. J. Magn. Magn. Mater. 489, 165379 (2019). DOI: 10.1016/j.jmmm.2019.165379
  30. I.A. Starkov, A.S. Starkov. Int. J. Solids Struct. 100-101, 187 (2016). DOI: 10.1016/j.ijsolstr.2016.08.015
  31. B. Ramachandran, M.S.R. Rao. Appl. Phys. Lett. 95, 142505 (2009). DOI: 10.1063/1.3242411
  32. G.P. Zheng, S. Uddin, X. Zheng, J. Yang. J. Alloys Compd. 663, 249 (2016). DOI: 10.1016/j.jallcom.2015.12.056
  33. A. Edstrom, C. Ederer. Phys. Rev. Lett. 124, 167201 (2020). DOI: 10.1103/PhysRevLett.124.167201
  34. A. Zakharov. Fiz. Met. Metalloved. 24, 84 (1967)
  35. A.M. Aliev, A.B. Batdalov, L.N. Khanov, A.P. Kamantsev, V.V. Koledov, A.V. Mashirov, V.G. Shavrov, R.M. Grechishkin, A.R. Kaul, V. Sampath. Appl. Phys. Lett. 109, 202407 (2016). DOI: 10.1063/1.4968241
  36. S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan, A.L. Tyurin. Phys. Lett. A 148, 363 (1990). DOI: 10.1016/0375-9601(90)90819-A
  37. E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, L. Manosa. Phys. Rev. B 89, 214105 (2014). DOI: 10.1103/PhysRevB.89.214105
  38. S. Nikitin, G. Myalikgulyev, M. Annaorazov, A.L. Tyurin, R.W. Myndyev, S.A. Akopyan. Phys. Lett. A 171, 234 (1992). DOI: 10.1016/0375-9601(92)90432-L
  39. A.A. Amirov, F. Cugini, A.P. Kamantsev, T. Gottschall, M. Solzi, A.M. Aliev, Y.I. Spichkin, V.V. Koledov, V.G. Shavrov. J. Appl. Phys. 127 (2020). DOI: 10.1063/5.0006355
  40. A. Gracia-Condal, T. Gottschall, L. Pfeuffer, O. Gutfleisch, A. Planes, L. Manosa. Appl. Phys. Rev. 7, 041406 (2020). DOI: 10.1063/5.0020755
  41. A. Chirkova, F. Bittner, K. Nenkov, N.V. Baranov, L. Schultz, K. Nielsch, T.G. Woodcock. Acta Mater. 131, 31 (2017). DOI: 10.1016/j.actamat.2017.04.005
  42. F. Albertini, J. Kamarad, Z. Arnold, L. Pareti, E. Villa, L. Righi. J. Magn. Magn. Mater. 316, 364 (2007). DOI: 10.1016/j.jmmm.2007.03.020
  43. E. Lovell, H.N. Bez, D.C. Boldrin, K.K. Nielsen, A. Smith, C.R.H. Bahl, L.F. Cohen. Phys. Status Solidi --- Rapid Res. Lett. 11, 1700143 (2017). DOI: 10.1002/pssr.201700143
  44. E. Stern-Taulats, P. Lloveras, M. Barrio, E. Defay, M. Egilmez, A. Planes, J.L. Tamarit, L. Manosa, N.D. Mathur, X. Moya. APL Mater. 4, 091102 (2016). DOI: 10.1063/1.4961598
  45. A. Chauhan, S. Patel, R. Vaish. Acta Mater. 89, 384 (2015). DOI: 10.1016/j.actamat.2015.01.070
  46. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan. J. Appl. Phys. 103, 031101 (2008). DOI: 10.1063/1.2836410
  47. C. Binek, V. Burobina. Appl. Phys. Lett. 102, 031915 (2013). DOI: 10.1063/1.4788690
  48. I. Starkov, A. Amirov, L. Khanov, A. Starkov. Ferroelectrics 569, 222 (2020). DOI: 10.1080/00150193.2020.1822680
  49. E. Mikhaleva, I. Flerov, A. Kartashev, M. Gorev, A. Cherepakhin, K. Sablina, N. Mikhashenok, N. Volkov, A. Shabanov. J. Mater. Res. 28, 3322 (2013). DOI: 10.1557/jmr.2013.360
  50. E. Mikhaleva, E. Eremin, I. Flerov, A. Kartashev, K. Sablina, N. Mikhashenok. J. Mater. Res. 30, 278 (2014). DOI: 10.1557/jmr.2014.369
  51. J. Ma, J. Hu, Z. Li, C.-W. Nan. Adv. Mater. 23, 1062 (2011). DOI: 10.1002/adma.201003636
  52. A.A. Amirov, A.S. Starkov, I.A. Starkov, A.P. Kamantsev, V.V. Rodionov. Lett. Mater. 8, 353 (2018). DOI: 10.22226/2410-3535-2018-3-353-357
  53. A.A. Amirov, V.V. Rodionov, I.A. Starkov, A.S. Starkov, A.M. Aliev. J. Magn. Magn. Mater. 470, 77 (2019). DOI: 10.1016/j.jmmm.2018.02.064
  54. A.A. Amirov, I.A. Baraban, A.A. Grachev, A.P. Kamantsev, V.V. Rodionov, D.M. Yusupov, V.V. Rodionova, A.V. Sadovnikov. AIP Adv. 10, 025124 (2020). DOI: 10.1063/1.5130026
  55. A.A. Amirov, T. Gottschall, A.M. Chirkova, A.M. Aliev, N.V. Baranov, K.P. Skokov, O. Gutfleisch. J. Phys. D 54 (2021). DOI: 10.1088/1361-6463/ac25ae
  56. R. Zhao, H. Huang, W. He, H. Wang, H.M. Jafri, J. Wang, X. Ma. J. Alloys Compd. 806, 1491 (2019). DOI: 10.1016/j.jallcom.2019.07.291
  57. Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du. Adv. Mater. 27, 801 (2015). DOI: 10.1002/adma.201404725
  58. R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A. Mougin, A.A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthelemy, M. Bibes. Nature Mater. 13, 345 (2014). DOI: 10.1038/nmat3870
  59. Q.B. Hu, J. Li, C.C. Wang, Z.J. Zhou, Q.Q. Cao, T.J. Zhou, D.H. Wang, Y.W. Du. Appl. Phys. Lett. 110, 222408 (2017). DOI: 10.1063/1.4984901
  60. T. Gottschall, E. Bykov, A. Gracia-Condal, B. Beckmann, A. Taubel, L. Pfeuffer, O. Gutfleisch, L. Manosa, A. Planes, Y. Skourski, J. Wosnitza. J. Appl. Phys. 127, 185107 (2020). DOI: 10.1063/5.0006079
  61. A. Czernuszewicz, J. Kaleta, D. Lewandowski. Energy Convers. Manag. 178, 335 (2018). DOI: 10.1016/j.enconman.2018.10.025
  62. H. Hou, P. Finkel, M. Staruch, J. Cui, I. Takeuchi. Nature Commun. 9, 4075 (2018). DOI: 10.1038/s41467-018-06626-y
  63. A.G. Olabi, A. Grunwald. Mater. Des. 29, 469 (2008). DOI: 10.1016/j.matdes.2006.12.016
  64. A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Y.K. Fetisov. Usp. Fiz. Nauk 188, 1288 (2018). DOI: 10.3367/ufnr.2018.01.038279
  65. Yu.I. Golovin, A.O. Zhigachev, D.Yu. Golovin, S.L. Gribanovsky, A.V. Kabanov, N.L. Klyachko. Izv. RAN. Ser. fiz., 84, 988 (2020) (in Russian). DOI: 10.31857/s0367676520070108
  66. S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M. V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Y. Sharaevskaya, Y.P. Sharaevsky. Usp. Fiz. Nauk 190 (2020). DOI: 10.3367/ufnr.2019.07.038609
  67. A. Fert. Usp. Fiz. Nauk 178, 1336 (2008). DOI: 10.3367/ufnr.0178.200812f.1336
  68. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovsky, I. Turek, J. Kunev s, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, R. Ramesh. Nature Mater. 13, 367 (2014). DOI: 10.1038/nmat3861
  69. S.A. Odintsov, A.A. Amirov, A.P. Kamantsev, A.A. Grachev, V.V. Rodionova, A.V. Sadovnikov. IEEE Trans. Magn. (2021). DOI: 10.1109/TMAG.2021.3085402
  70. S.A. Odintsov, A.A. Amirov, A.A. Grachev, V.V. Rodionova, A.V. Sadovnikov. FTT 63, 1317 (2021) (in Russian). DOI: 10.21883/ftt.2021.09.51307.24h
  71. A.A. Grachev, O. V. Matveev, M. Mruczkiewicz, M.A. Morozova, E.N. Beginin, S.E. Sheshukova, A.V. Sadovnikov. Appl. Phys. Lett. 118, 262405 (2021). DOI: 10.1063/5.0051429
  72. X.Z. Chen, J.F. Feng, Z.C. Wang, J. Zhang, X.Y. Zhong, C. Song, L. Jin, B. Zhang, F. Li, M. Jiang, Y.Z. Tan, X.J. Zhou, G.Y. Shi, X.F. Zhou, X.D. Han, S.C. Mao, Y.H. Chen, X.F. Han, F. Pan. Nature Commun. 8 (2017). DOI: 10.1038/s41467-017-00290-4
  73. V.I. Zverev, A.P. Pyatakov, A.A. Shtil, A.M. Tishin. J. Magn. Magn. Mater. 459, 182 (2018). DOI: 10.1016/j.jmmm.2017.11.032
  74. A.M. Tishin, Y.I. Spichkin, V.I. Zverev, P.W. Egolf. Int. J. Refrig. 68, 177 (2016). DOI: 10.1016/j.ijrefrig.2016.04.020
  75. A.M. Tishin, J.A. Rochev, A.V. Gorelov. US patent 9,017,713,B2, priority from 13.10.2006 (2015)
  76. A.A. Amirov, D.M. Yusupov, E.K. Murliev, C.A. Gritsenko, A.M. Aliev, A.M. Tishin. Mater. Lett. 304, 130626 (2021) DOI: 10.1016/j.matlet.2021.130626
  77. M. Barbic, S.J. Dodd, H.D. Morris, N. Dilley, B. Marcheschi, A. Huston, T.D. Harris, A.P. Koretsky. Magn. Res. Med. 81, 2238 (2019). DOI: 10.1002/mrm.27615
  78. M. Barbic, S.J. Dodd, H. ElBidweihy, N.R. Dilley, B. Marcheschi, A.L. Huston, H.D. Morris, A.P. Koretsky. Magn. Res. Med. 85, 506 (2021). DOI: 10.1002/mrm.28400
  79. Y. Cao, Y. Yuan, Y. Shang, V.I. Zverev, R.R. Gimaev, R. Barua, R.L. Hadimani, L. Mei, G. Guo, H. Fu. J. Mater. Sci. 55, 13363 (2020). DOI: 10.1007/s10853-020-04921-y.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru