Non-isochronicity of ferromagnetic nanoparticles of various shapes in a magnetic field
Matveev A. A.
1,2, Arkhipova O. Yu.
1,2, Reshetova E. V.
3, Safin A. R.
1,4, Kravchenko O. V.
1,3, Nikitov S. A.
1,21Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Moscow, Russia
3Dorodnitsyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
4National Research University «Moscow Power Engineering Institute», Moscow, Russia
Email: maa.box@yandex.ru, olyuar@gmail.com, reshkaterina02@gmail.com, arsafin@gmail.com, olekravchenko@mail.ru, nikitov@cplire.ru
The possibility of controlling the non-isochronicity of ferromagnetic nanoparticles using an external magnetic field is investigated. Analytical expressions characterizing the nonlinear frequency shift of resonant magnetization oscillations for the diagonal tensor of demagnetizing factors are obtained by the method of Hamiltonian formalism. It is shown that when rotating and changing the magnitude of the vector of the external field of the bias magnetic field, it is possible to achieve a restructuring of the resonant oscillation frequency by changing the amplitude of the applied alternating magnetic field for both spherical and cylindrical the sample in the presence of uniaxial anisotropy. In the isotropic case, for a spherically symmetric sample, the non-isochronicity coefficient is zero due to the symmetry of the demagnetization tensor of the sphere, whereas for a cylindrical sample it is nonzero. The results obtained can be used to construct new types of essentially nonlinear microwave spintronics and magnonics devices. Keywords: non-isochronicity, non-isochronicity coefficient, Hamiltonian formalism, demagnetization tensor.
- S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M.V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Yu. Sharaevskaya, Yu. P. Sharaevsky, A.I. Kirilyuk, UFN, 190 (10), 1009 (2020). DOI: 10.3367/UFNr.2019.07.038609
- M.E. Seleznev, Yu.V. Nikulin, V.K. Sakharov, Yu.V. Khivintsev, A.V. Kozhevnikov, S.L. Vysotsky, Y.A. Filimonov, ZhTF, 91 (10), 1504 (2021). DOI: 10.21883/JTF.2021.10.51363.136-21
- B.A. Kalinikos, A.B. Ustinov, S.A. Baruzdin, Spin-volnovye ustroistva i ekho-protsessory (Radiotekhnika, M., 2013) (in Russian)
- V.M. Gevorgyan, V.N. Kochemasov, A.R. Safin. Elektronika: nauka, technologia, biznes, 227 (6), 76 (2023) (in Russian). DOI: 10.22184/1992-4178.2023.227.6.76.89
- J. Krupka, B. Salski, P. Kopyt, G. Wojciech. Sci. Rep., 6 (1), 34739 (2016). DOI: 10.1038/srep34739
- R. Morris, A. van Loo, S. Kosen, A. Karenowska. Sci Rep., 7 (1), 11511 (2017). DOI: 10.1038/s41598-017-11835-4
- D.O. Krivulin, I.Yu. Pashenkin, R.V. Gorev, P.A. Yunin, M.V. Sapozhnikov, A.V. Grunin, S.A. Zakharova, V.N. Leontiev, ZhTF, 93 (7), 907 (2023). DOI: 10.21883/JTF.2023.07.55744.72-23
- N.V. Ostrovskaya, V.A. Skidanov, Yu.A. Yusipova. ZhTF, 93 (5), 687 (2023) (in Russian). DOI: 10.21883/JTF.2023.05.55464.250-22
- S.L. Vysotsky, A.V. Kozhevnikov, Yu.A. Filimonov. FTT, 63 (9), 1258 (2021) (in Russian). DOI: 10.21883/FTT.2021.09.51249.02H
- D.A. Gabrielyan, D.A. Volkov, E.E. Kozlova, A.R. Safin, D.V. Kalyabin, A.A. Klimov, V.L. Preobrazhensky, M.B. Strugatsky, S.V. Yagupov, I.E. Moskal, G.A. Ovsyannikov, S.A. Nikitov. J. Phys. D: Appl. Phys., 57, 305003 (2024). DOI: 10.1088/1361-6463/ad3f28
- A.Yu. Mitrofanova, A.R. Safin, D.P. Egorov, O.V. Kravchenko, N.I. Bazenkov. 2021 Photonics \& Electromagnetics Research Symposium (PIERS) (Hangzhou, China, 2021), p. 2568-2572. DOI: 10.1109/PIERS53385.2021.9694780
- C. Navau, J. Prat-Camps, O. Romero-Isart, J. Cirac, A. Sanchez. Phys. Rev. Lett., 112, 253901 (2014). DOI: 10.1103/PhysRevLett.112.253901
- P. Fischer, D. Sanz-Hernandez, R. Streubel, A. Fernandez-Pacheco. APL Mater., 8 (1), 010701 (2020). DOI: 10.1063/1.5134474
- A. Slavin, V. Tiberkevich. IEEE TMAG, 44 (7), 1916 (2008). DOI: 10.1109/TMAG.2008.924537
- A.A. Matveev, A.R. Safin, S.A. Nikitov. JMMM, 592 (7), 171825 (2024). DOI: 10.1016/j.jmmm.2024.171825
- L.D. Landau, E.M. Lifshitz. Phys. Z. Sowietunion, 8 (1), 153 (1935)
- T.L. Gilbert. IEEE Trans. Magn., 40 (6), 3443 (2004). DOI: 10.1109/tmag.2004.836740
- Yu.K. Fetisov, A.V. Makovkin. ZhTF, 71 (1), 86 (2001). (in Russian)
- V.A. Orlov, V.S. Prokopenko, R.Yu. Rudenko, I.N. Orlova. ZhTF 67 (4), 609 (2022). DOI: 10.21883/JTF.2022.04.52243.273-21
- C. Vittoria, H. Lessoff, N. Wilsey. IEEE Transactions on Magnetics, 8 (3), 273 (1972). DOI: 10.1109/TMAG.1972.1067301
- A. Newell, W. Williams, D. Dunlop. J. Geophys. Res., 98, 9551 (1993). DOI: 10.1029/93JB00694
- P. Krivosik, C. Patton. Phys. Rev. B, 82 (18), 184428 (2010). DOI: 10.1103/PhysRevB.82.184428
- E.A. Kuznetsov. J. Exp. Theor. Phys., 93 (5), 1052 (2001). DOI: 10.1134/1.1427116
- V. Zakharov, S. Nazarenko. Physica D, 201 (3), 203 (2005). DOI: 10.1016/j.physd.2004.11.017
- Y. Lvov, E. Tabak. Physica D, 195 (1), 106 (2004). DOI: 10.1016/j.physd.2004.03.010
- T. Holstein, H. Primakoff. Phys. Rev., 58 (12), 1098 (1940). DOI: 10.1103/PhysRev.58.1098
- N.N. Bogoljubov. Il Nuovo Cimento, 7 (6), 794 (1958). DOI: 10.1007/bf02745585
- K. Wagner, L. Korber, S. Stienen, J. Lindner, M. Farle, A. Kakay. IEEE Magn. Lett., 12, 6100205 (2021). DOI: 10.1109/LMAG.2021.3055447
- S. Klingler, H. Maier-Flaig, C. Dubs, O. Surzhenko, R. Gross, H. Huebl, S.T.B. Goennenwein, M. Weiler. Appl. Phys. Lett., 110 (9), 092409 (2017). DOI: 10.1063/1.4977423
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.