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Non-isochronicity of ferromagnetic nanoparticles of various shapes in

a magnetic field
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The possibility of controlling the non-isochronicity of ferromagnetic nanoparticles using an external magnetic

field is investigated. Analytical expressions characterizing the nonlinear frequency shift of resonant magnetization

oscillations for the diagonal tensor of demagnetizing factors are obtained by the method of Hamiltonian formalism.

It is shown that when rotating and changing the magnitude of the vector of the external field of the bias magnetic

field, it is possible to achieve a restructuring of the resonant oscillation frequency by changing the amplitude of

the applied alternating magnetic field for both spherical and cylindrical the sample in the presence of uniaxial

anisotropy. In the isotropic case, for a spherically symmetric sample, the non-isochronicity coefficient is zero due

to the symmetry of the demagnetization tensor of the sphere, whereas for a cylindrical sample it is nonzero. The

results obtained can be used to construct new types of essentially nonlinear microwave spintronics and magnonics

devices.
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Introduction

Magnetic materials are used in spintronic devices for

transmitting and processing of information. The possi-

bility of generating ultrahigh-frequency dynamics of mag-

netization in various magnetic samples is being actively

investigated [1,2]. Traditionally, radio engineering elements

based on films or spheres are considered for practical

applications [3,4]. For example, spheres made of iron-

yttrium garnet are widely used in microwave electronics as

frequency-selective elements [4]. Single-cascade filters and

resonators are suggested to be fabricated [5]. Research is

also being conducted to study the physics of interactions

between ferromagnetic spheres and superconductors [6].
Much scientific focus is made on application of linear

and nonlinear dynamics of magnetization in ferro- and

antiferromagnetic films in spintronic devices, as well as

on the control of the properties of such structures [1,7].
Magnetic films can be used to solve a wide range of

tasks: from data storage [8] and magnetometry [9] to spin

current generation [10] and neuromorphic computing [11].
Currently, the study of magnetization dynamics in magnetic

samples, the geometric shapes of which are different

from spheres and films, is not given so much scientific

attention. Nevertheless, magnetic cylinders are proposed

to be used as non-planar solutions for signal transmission

problems in spintronics [12,13]. It should be stressed

that the ability to control the non-isochronous oscillations,

possibly caused by the shape anisotropy, is essential in the

development of spintronic devices, since it determines the

ratio between the frequency of magnetization oscillations

and their amplitude [14,15]. In addition, with a sufficiently

large non-isochronism, phase noise will be amplified by

amplitude noise due to amplitude-phase conversion [3].
Earlier, in [14], the dynamics of magnetization oscillations

in a sample with a thin film geometry was considered given

the nonlinear frequency shift of vibrations, and in [15],
the influence of external magnetic field on the nonlinear

frequency shift in this sample was investigated. The

purpose of this work is to obtain and study the nonlinear

coefficients of magnetization oscillations frequency shift

(non-isochronism coefficients) for spintronic ferromagnetic

samples with a geometry in the form of a sphere and a thin

cylinder when exposed to external magnetic field.

1. Theoretical analysis

The dynamics of magnetization in a ferromagnetic mate-

rial can be described using the Landau−Lifshitz equation,

which has the form [14,16]:

dm
dt

= −γm×Heff + αm×
dm
dt

, (1)

where γ — modulus of gyromagnetic ratio of an electron,

m — magnetization vector normalized to the saturation
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magnetization Ms , Heff — effective magnetic field, α —
Hilbert coefficient [17]. Note that in this paper we are

investigating the effect of an external magnetic field on the

nonlinearity of a ferromagnetic sample, so it is enough to

consider only conservative part of equation (1). In this

case, further analysis may not take into account Hilbert

attenuation. The effective magnetic field is related to

the magnetic energy E as a variational derivative of its

functional [14,18]:

Heff = −
1

µ0Ms

δE
δm

. (2)

Here µ0 is the magnetic constant. Full magnetic energy is

written as

E =

∫
εV dV, (3)

where εV — volumetric density of magnetic energy. We

use the macrospin approximation because we do not study

wave propagation in ferromagnets or the dynamics of

inhomogeneous magnetization states [19]. This means that

the energy contribution of the exchange interaction can be

ignored. Then the magnetic energy density may be written

as

εV = −µ0MsH0m− Ku(meu)
2 +

µ0M2
s

2
m D̂ m. (4)

In the expression (4) the first term in the right-hand side

arises due to the application of external magnetic field to the

ferromagnetic sample H0 and is called Zeeman volumetric

energy density. The second term describes the contribution

of uniaxial magnetic anisotropy, which may occur due to a

violation of crystal symmetry during the growth of [20], with

a constant Ku and a direction vector eu. In this paper, we do

not consider crystallographic anisotropy. However, within

the approach used for spherical and cylindrical shapes of a

ferromagnetic sample, it can be taken into account in the

same way as for thin ferromagnetic films [15]. The third

term is the demagnetization field energy density that arises

as a result of the dipole-dipole interaction in a ferromagnet.

The diagonal demagnetization tensor D̂ may be used to

describe the energy contribution of such an interaction.

This type of tensor is used to simulate the dynamics of

magnetization in a sphere, extended cylinder, or a thin

film [21]. Thus, the energy density in the equation (4) will

be expressed as

εV = −µ0MsH0m− Ku(meu)
2 +

µ0M2
s

2

(
Dxx(mex )

2

+ Dyy (mey )
2 + Dz z (mez )

2
)
, (5)

where Dxx , Dyy , Dz z — diagonal components of the demag-

netization tensor D̂. Then, the effective magnetic field may

be written as

Heff = H0 + Hu(meu)eu − Ms
(
Dxx(mex )ex

+ Dyy(mey )ey + Dz z (mez )ez
)
, (6)

where Hu — uniaxial anisotropy field associated with

constant Ku by the relation

Hu = 2Ku/(µ0Ms ).

Equation (1) is a vector nonlinear equation. It is difficult to

theoretically analyze such kind of equations. In this case,

we can use the method of Hamiltonian formalism [22],
which allows us to convert the Landau−Lifshitz equation

to Hamiltonian equations. It should be noted that such

equations are an effective tool for analyzing nonlinear

dynamics and are widely used in various applications. For

example, the Hamiltonian formalism is applicable to the

study of plasma [23], Bose-Einstein condensate [24] and

in hydrodynamics [25]. This method consists in introduc-

ing a new complex variable describing the magnetization

dynamics, the square of modulus of which delineates the

oscillation power [14,22]. One of the simplest ways to

introduce such a variable is to transform it by relating

this new variable to the amplitude of the magnetization

precession. To determine the precession amplitude, it is

necessary to find the vector around which the magnetization

m will oscillate. The unit vector eζ of this direction can be

found from the equation.

−
1

µ0Ms

δE
δm

= Heξ , (7)

where H — internal magnetic field. In Cartesian coordinate

system the vector eξ is expressed as

eξ =
(
cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)

)
.

Let ξ be the angle in OXY plane between the vector of

anisotropy eu and axis OX . Let’s denote by θ0 and ϕ0

the polar and azimuthal angles of the external magnetic

field H0. Then the orientation angles of vector eξ and the

internal magnetic field H can be found from the system of

equations

(H + Ms Dxx) cos(θ) cos(ϕ) = H0 cos(θ0) cos(ϕ0)

+ Hu(eξeu) cos(ξ),

(H + Ms Dyy) cos(θ) sin(ϕ) = H0 cos(θ0) sin(ϕ0)

+ Hu(eξeu) sin(ξ),

(H + Ms Dz z ) sin(θ) = H0 sin(θ0). (8)

Let’s introduce two unit vectors eξ and eη complementing eζ
to the right triple

eξ = sin(θ) cos(ϕ)ex + sin(θ) sin(ϕ)ey − cos(θ)ez ,

eη = − sin(ϕ)ex + cos(ϕ)ey . (9)

Hamiltonian equations are written with respect to variables

called canonical [22]. Depending on the specific task, such

variables can be complex conjugate, as well as depend on

coordinates and time. When describing the dynamics of
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magnetization, canonical variables are most often associated

with the deviation of the vector m from its equilibrium po-

sition [14,15]. For spin waves, the canonical transformation

was first introduced by Holstein and Primakov [26]. In the

considered case, such a transformation may be written as

a =
mξ − imη√
2(1 + mζ )

. (10)

Here mξ , mη, mζ — Projections of vector m on the respec-

tive coordinate axes. The dimensionless variable a describes

the amplitude of the magnetization precession. The dynamic

equation for this variable in the studied case under will have

the form
∂a(r, t)

∂t
= −i

∂Ha

∂a∗
, (11)

where

Ha = γE/(µ0Ms)

— normalized magnetic energy depending on the complex

amplitude a . We operate in the macrospin approximation

and neglect the spatial inhomogeneities of — magnetiza-

tion m. In this case a = a(t), which means that in equa-

tion (11) on the left side, it’s possible to write the full, not

the partial derivative. To switch from the Landau−Lifshitz

equation (1) to its Hamiltonian notation (11), it is necessary
to replace the basis ex , ey , ez with a new eζ , eξ , eη and take

into account the inverse transformation to (10)

mζ = (1− 2|a |2),

mξ =
√
1− |a |2 (a + a∗),

mη = −i
√
1− |a |2 (a − a∗). (12)

Expressions (12) can be obtained directly from (10), given
that the length of the magnetization vector is preserved

m2
ζ + m2

ξ + m2
η = 1. The energy Ha may be expanded into

a series by a dimensionless variable a near the minimum

of the magnetic energy. Let’s write down such a series,

taking into account terms not higher than 4 of the order of

smallness.

Ha = A|a |2 +

(
1

2
Ba2+

1

2
B∗a∗2

)
+

(
V |a |2a + V ∗|a |2a∗

)

+ U1|a |
4 +

(
U2|a |

2a2 + U∗

2 |a |
2a∗2

)
+ . . . (13)

The expressions obtained for the coefficients of the se-

ries (13) are presented in Appendix A. Using the Hamil-

tonian Ha , it is possible to describe the dynamics of mag-

netization of ferromagnetic samples of various geometric

shapes. The resulting Hamiltonian (13) is very bulky to

analyze, so it is necessary to apply some transformations.

Let’s note that its quadratic part is not diagonal. It is

possible to simplify the quadratic part using Bogolyubov

transformation [27]. In the considered case, such a

transformation may be written as

a = ub − vb∗, (14)

where

u =

√
A + ω0

ω0

,

v =

√
A − ω0

ω0

,

ω0 =
√

A2 − |B |2.

In such a replacement the series for the Hamiltonian will

look as follows

Hb = ω0|b|
2 +

(
W1|b|

2b + W ∗

1 |b|
2b∗ + W2b3 + W ∗

2 b∗3
)

+ T |b|4 + . . . (15)

Here

W1 = −v∗2V ∗v + 2u(Vv − u∗V ∗)v∗ + u∗Vu2,

W2 = V ∗v∗2 −Vu2V ∗,

T =
(
u2U1−3uU∗

2 v
∗
)
u∗2−3

(
u2U2−

4

3
uU1v

∗+v∗2U∗

2

)
vu∗

−3v∗U2uv2 + v∗2U1v
2. (16)

Note that the diagonalization (14) is a canonical transforma-

tion, i.e., preserves the Hamiltonian form of the equations.

In this case, the conservative dynamic equation for the

complex amplitude b can be written as follows:

db
dt

= −i
∂Hb

∂b∗
. (17)

In (15), terms proportional to the third power of the

complex amplitude b can be excluded. However, it is

necessary to use a quasi-canonical nonlinear substitution

for this. This means that the Hamiltonian form will be

preserved only if the high-order terms are removed during

the decomposition of the Hamiltonian. As mentioned

earlier [14,15], the following nonlinear replacement may be

used:

b = c +
1

ω0

(
W1c

2 − 2W ∗

1 |c|
2 −W ∗

2 c∗2
)
. (18)

Under this transformation, the Hamiltonian takes the simple

form

Hc = ω0|c|
2 +

N
2
|c|4, (19)

where non-isochronism coefficient is determined by the

expression

N = 2

(
T − 3

|W1|
2 + |W2|

2

ω0

)
. (20)

The dynamic equation for a complex amplitude c
with Hamiltonian (19) takes the form

dc
dt

= −iω
(
|c|2

)
c, (21)
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Figure 1. a — schematic view of a spherical ferromagnetic sample with a magnetization m when exposed to the magnetic field H0 . The

uniaxial anisotropy vector eu is directed along OX axis. b — non-isochronism coefficient of a sphere versus polar angle 20 at which the

external magnetic field is applied.

where the precession frequency is expressed as

ω
(
|c|2

)
= ω0 + N|c|2. (22)

Here ω0 — eigen frequency, N — nonlinearity coefficient.

Thus, the nonlinearity coefficient determines the relationship

between the frequency and power |c|2 of magnetization

precession in a ferromagnetic material. Note that a change

of |c|2 is possible when an ultrahigh-frequency alternating

magnetic field is applied to the sample, which excites the

magnetization precession [28]. In this case, at N 6= 0, it is

possible to control the resonant frequency of a ferromagnetic

nanoparticle.

2. Calculations

Yttrium-iron garnet Y3Fe5O12 was chosen as the material

from which ferromagnetic samples of various shapes were

made. The material in question is considered one of the

best among solid-state magnets, since it can be used to

study the dynamics of high-frequency magnetization due to

its extremely low Hilbert coefficient α, which can reach

about 5 · 10−5 [29]. A sphere and a circular cylinder were

used as the studied geometries (Fig. 1, a and 2, a) of the

ferromagnetic samples. Components of the demagnetization

factor tensor for the sphere: Dxx = Dyy = Dz z = 1/3;

circular cylinder: Dxx = Dyy = 1/2, Dz z = 0. The fol-

lowing magnetic parameters of the material were used

for calculations: Ms = 1.3 · 105 A/m, Hu = 1.2 · 103 A/m,

eu = (1, 0, 0).
Because at different magnitudes and directions of the

external magnetic field vector applied to the ferromagnetic

nanoparticle, the direction of the ground state m0 also

turns out to be different, in order to determine the non-

isochronism coefficient N for a given H0 it is necessary first

to solve the system (8) relative to the angles ϕ, 2 and only

then use the formulae (16), (20), ( A1). Therefore, when

plotting the graphs shown in Fig. 1, b, 2, b and 2, c, for

each point the ground state was found separately using the

numerical solution (8).

3. Results

Let’s consider how the nonlinearity of ferromagnetic sam-

ples will change at different orientations and magnitudes of

the external magnetic field. Fig. 1, b shows the dependence

of N for the sphere on the polar angle of external magnetic

field H0. Note that N rearrangement in this case is possible

only due to the presence of uniaxial magnetic anisotropy. In

a homogeneous isotropic sphere, the magnetic energy at

H01 =
(
H0x1, H0y1, H0z1

)
, m ‖ H01

doesn’t differ from the energy in state

H02 =
(
H0x2, H0y2, H0z2

)
, m ‖ H02

and is determined only by the applied external magnetic

field. Hence, the coefficients energy expansion in terms of

amplitude |c| do not differ either. Moreover, it turns out

that for the sphere A = γH0, and all other coefficients of

the series for Ha (12) are zero, which means N = 0. In

this case, when precession m is excited, there will be no

amplitude-phase conversion of noise in the ferromagnetic

sphere and a shift in the resonant frequency with a change

in the amplitude of magnetization oscillations, which makes

spherical elements promising frequency-selective elements

for use in spintronics devices. Yet, if there is magnetic

anisotropy in a spherical ferromagnetic sample, then it will

be possible to achieve a zero non-isochronism coefficient

using a magnetic field applied at a certain angle to the

anisotropy direction vector eu. Figures 2, b, c show

the dependences of N for a straight circular cylinder on

the polar and azimuthal angles of the external magnetic

field H0, respectively, at different values of this field.

Let’s consider the nonlinearity coefficient versus azimuth

angle ϕ0 at 20 = 0. As H0 rises, the N(ϕ0) graph

Technical Physics, 2025, Vol. 70, No. 6
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Figure 2. a — schematic view of a cylindrical ferromagnetic sample with a magnetization m when exposed to the magnetic field H0.

The uniaxial anisotropy vector eu is directed along OX axis. b — non-isochronism coefficient of N cylinder versus polar angle 20 of the

applied external magnetic field at azimuth angle ϕ0 = 0. c — N versus azimuth angle ϕ0 of external magnetic field at 20 = 0.

becomes flatter and non-isochronism rearrangement area

1N = Nmax−Nmin, found as the difference between the

maximum and minimum values N, decreases. This is

explained by the fact that at large external fields, the

contribution to energy from magnetic anisotropy becomes

small compared to Zeeman energy. And hence, magnetic

energy in case when strong external magnetic field is

applied along OX axis, i.e. H0 = (H0, 0, 0) doesn’t much

differ from the magnetic energy when this field is applied

along OY axis i.e. when H0 = (0, H0, 0). Now let’s consider

the dependence N(20) at ϕ0 = 0 (Fig. 2, b). Note that

achieving zero non-isochronism for such a cylinder is also

possible if an external magnetic field H0 is applied at a

certain angle to the plane of the cylinder base. If 20 is

nonzero, then, unlike a spherical sample, the rearrangement

of the nonlinearity coefficient is possible even in the absence

of uniaxial magnetic anisotropy. This is due to the fact

that the states m = (0, 0, 1) and m = (mx , my , 0) differ in

energy E due to the presence of anisotropic contribution

from the dipole-dipole interaction to the total magnetic

energy. Indeed, the tensor of demagnetizing factors D̂ for a

ferromagnetic cylinder is non-diagonal.

Conclusion

In this paper, an analytical expression was obtained

for the non-isochronism coefficient N of spherical and

cylindrical ferromagnetic nanoparticles where the energy

of the dipole-dipole interaction may be described using

a diagonal tensor of demagnetizing factors. Taking into

account uniaxial magnetic anisotropy in this expression

allows us to assert that if there is magnetic anisotropy

in a spherical ferromagnetic sample, then it is possible to

achieve a zero coefficient of nonlinearity when applying an

external magnetic field H0 at some angle to the direction

vector of this anisotropy. In addition, it was shown that

the magnetization fluctuations in a homogeneous isotropic

sphere are isochronous. For a sample having a straight

circular cylinder shape, the analysis of the expression

obtained showed that in such a geometry it is possible to

achieve a zero coefficient of nonlinearity when an external

magnetic field is applied at a certain angle to the plane of

the cylinder base.
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Appendix A

The coefficients of Hamiltonian expansion Ha (13) in a

series with respect to the complex amplitude a have the

form

A =
1

2
γ
(
Hu cos(ϕ)2 cos(θ)2 − Dxx Ms cos(ϕ)2 cos(θ)2

+ Ms Dyy cos(ϕ)2 cos(θ)2 − Ms Dyy cos(θ)
2

+ Dz z Ms cos(θ)
2 − Dxx Ms + Ms Dyy + 2H − Hu

)
,

B =
1

2
γ
(
iHu sin(2ϕ) sin(θ) + iMs Dyy sin(2ϕ) sin(θ)

+ Hu cos(ϕ)2 cos(θ)2 − Dxx Ms cos(ϕ)2 cos(θ)2

− iMs Dxx sin(2ϕ) sin(θ) + Ms Dyy cos(ϕ)2 cos(θ)2

− 2Hu cos(ϕ)2 + 2Dxx Ms cos(ϕ)2 − 2Ms Dyy cos(ϕ)2

−Ms Dyy cos(θ)
2+Dz z Ms cos(θ)

2+Hu−Dxx Ms+Ms Dyy

)
,

V = −γ cos(θ)
(
iHu sin(ϕ) cos(ϕ) − Hu sin(θ) cos(ϕ)2

− iMs Dxx sin(ϕ) cos(ϕ) + Dxx Ms sin(θ) cos(ϕ)2

+ iMs Dyy sin(ϕ) cos(ϕ) − Ms Dyy sin(θ) cos(ϕ)2

+ Ms Dyy sin(θ) − Ms Dz z sin(θ)
)
,

U1=
1

2
γ
(
−3Hu cos(ϕ)2 cos(θ)2+3DxxMs cos(ϕ)2 cos(θ)2

− 3Ms Dyy cos(ϕ)2 cos(θ)2 + 3Ms Dyy cos(θ)
2

− 3Dz z Ms cos(θ)
2 − Dxx Ms − Ms Dyy + 2Ms Dz z + Hu

)
,

U2 = −
1

4
γ
(
iHu sin(2ϕ) sin(θ) + iMs Dyy sin(2ϕ) sin(θ)

+ Hu cos(ϕ)2 cos(θ)2 − Dxx Ms cos(ϕ)2 cos(θ)2

− iMs Dxx sin(2ϕ) sin(θ) + Ms Dyy cos(ϕ)2 cos(θ)2

− 2Hu cos(ϕ)2 + 2Dxx Ms cos(ϕ)2 − 2Ms Dyy cos(ϕ)2

−Ms Dyy cos(θ)
2+Dz z Ms cos(θ)

2+Hu−Dxx Ms+Ms Dyy
)
.
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