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Non-isochronicity of ferromagnetic nanoparticles of various shapes in
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The possibility of controlling the non-isochronicity of ferromagnetic nanoparticles using an external magnetic
field is investigated. Analytical expressions characterizing the nonlinear frequency shift of resonant magnetization
oscillations for the diagonal tensor of demagnetizing factors are obtained by the method of Hamiltonian formalism.
It is shown that when rotating and changing the magnitude of the vector of the external field of the bias magnetic
field, it is possible to achieve a restructuring of the resonant oscillation frequency by changing the amplitude of
the applied alternating magnetic field for both spherical and cylindrical the sample in the presence of uniaxial
anisotropy. In the isotropic case, for a spherically symmetric sample, the non-isochronicity coefficient is zero due
to the symmetry of the demagnetization tensor of the sphere, whereas for a cylindrical sample it is nonzero. The
results obtained can be used to construct new types of essentially nonlinear microwave spintronics and magnonics

devices.
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Introduction

Magnetic materials are used in spintronic devices for
transmitting and processing of information. The possi-
bility of generating ultrahigh-frequency dynamics of mag-
netization in various magnetic samples is being actively
investigated [1,2]. Traditionally, radio engineering elements
based on films or spheres are considered for practical
applications [3,4]. For example, spheres made of iron-
yttrium garnet are widely used in microwave electronics as
frequency-selective elements [4]. Single-cascade filters and
resonators are suggested to be fabricated [5]. Research is
also being conducted to study the physics of interactions
between ferromagnetic spheres and superconductors [6].
Much scientific focus is made on application of linear
and nonlinear dynamics of magnetization in ferro- and
antiferromagnetic films in spintronic devices, as well as
on the control of the properties of such structures [1,7].
Magnetic films can be used to solve a wide range of
tasks: from data storage [8] and magnetometry [9] to spin
current generation [10] and neuromorphic computing [11].
Currently, the study of magnetization dynamics in magnetic
samples, the geometric shapes of which are different
from spheres and films, is not given so much scientific
attention. Nevertheless, magnetic cylinders are proposed
to be used as non-planar solutions for signal transmission
problems in spintronics [12,13]. It should be stressed
that the ability to control the non-isochronous oscillations,

possibly caused by the shape anisotropy, is essential in the
development of spintronic devices, since it determines the
ratio between the frequency of magnetization oscillations
and their amplitude [14,15]. In addition, with a sufficiently
large non-isochronism, phase noise will be amplified by
amplitude noise due to amplitude-phase conversion [3].

Earlier, in [14], the dynamics of magnetization oscillations
in a sample with a thin film geometry was considered given
the nonlinear frequency shift of vibrations, and in [15],
the influence of external magnetic field on the nonlinear
frequency shift in this sample was investigated. = The
purpose of this work is to obtain and study the nonlinear
coefficients of magnetization oscillations frequency shift
(non-isochronism coefficients) for spintronic ferromagnetic
samples with a geometry in the form of a sphere and a thin
cylinder when exposed to external magnetic field.

1. Theoretical analysis

The dynamics of magnetization in a ferromagnetic mate-
rial can be described using the Landau—Lifshitz equation,
which has the form [14,16]:

dm

d
E:—ymxHefH—amx—m, (1)

dt

where ¥ — modulus of gyromagnetic ratio of an electron,
m — magnetization vector normalized to the saturation
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magnetization Ms, Heg — effective magnetic field, @ —
Hilbert coefficient [17]. Note that in this paper we are
investigating the effect of an external magnetic field on the
nonlinearity of a ferromagnetic sample, so it is enough to
consider only conservative part of equation (1). In this
case, further analysis may not take into account Hilbert
attenuation. The effective magnetic field is related to
the magnetic energy E as a variational derivative of its
functional [14,18]:

1 6E

Hep = — o=,
r = " Mg om

(2)

Here ug is the magnetic constant. Full magnetic energy is
written as

E:/wdv, (3)

where ey — volumetric density of magnetic energy. We
use the macrospin approximation because we do not study
wave propagation in ferromagnets or the dynamics of
inhomogeneous magnetization states [19]. This means that
the energy contribution of the exchange interaction can be
ignored. Then the magnetic energy density may be written
as

~

_ 2 HOMg
ev = —oMsHom — K, (me, )~ + — mDm. (4)

In the expression (4) the first term in the right-hand side
arises due to the application of external magnetic field to the
ferromagnetic sample Ho and is called Zeeman volumetric
energy density. The second term describes the contribution
of uniaxial magnetic anisotropy, which may occur due to a
violation of crystal symmetry during the growth of [20], with
a constant K and a direction vector e. In this paper, we do
not consider crystallographic anisotropy. However, within
the approach used for spherical and cylindrical shapes of a
ferromagnetic sample, it can be taken into account in the
same way as for thin ferromagnetic films [15]. The third
term is the demagnetization field energy density that arises
as a result of the dipole-dipole interaction in a ferromagnet.
The diagonal demagnetization tensor D may be used to
describe the energy contribution of such an interaction.
This type of tensor is used to simulate the dynamics of
magnetization in a sphere, extended cylinder, or a thin
film [21]. Thus, the energy density in the equation (4) will
be expressed as

M2
6\/ = —/J()MSH()m - Ku(meu)2 + ‘L[OZ S (Dxx(mex)z

+ Dyy(mey)* + Dz (me;)?), (5)

where Dyx, Dyy, D;; — diagonal components of the demag-

netization tensor D. Then, the effective magnetic field may
be written as

Heff == H() + Hu(meu)eu - Ms(Dxx(mex)ex

+ Dyy (mey)ey + Dz, (mez)ez), (6)
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where H, — uniaxial anisotropy field associated with
constant K, by the relation

Hu = 2Ky/ (uoMs).

Equation (1) is a vector nonlinear equation. It is difficult to
theoretically analyze such kind of equations. In this case,
we can use the method of Hamiltonian formalism [22],
which allows us to convert the Landau—Lifshitz equation
to Hamiltonian equations. It should be noted that such
equations are an effective tool for analyzing nonlinear
dynamics and are widely used in various applications. For
example, the Hamiltonian formalism is applicable to the
study of plasma [23], Bose-Einstein condensate [24] and
in hydrodynamics [25]. This method consists in introduc-
ing a new complex variable describing the magnetization
dynamics, the square of modulus of which delineates the
oscillation power [14,22]. One of the simplest ways to
introduce such a variable is to transform it by relating
this new variable to the amplitude of the magnetization
precession. To determine the precession amplitude, it is
necessary to find the vector around which the magnetization
m will oscillate. The unit vector e; of this direction can be
found from the equation.

1S
‘Ll()Ms(Sm_

He:, (7)

where H — internal magnetic field. In Cartesian coordinate
system the vector ez is expressed as

e: = (cos(0) cos(@), cos(0) sin(g), sin(9)).

Let £ be the angle in OXY plane between the vector of
anisotropy e, and axis OX. Let’s denote by 6y and ¢@g
the polar and azimuthal angles of the external magnetic
field Hp. Then the orientation angles of vector es and the
internal magnetic field H can be found from the system of
equations

(H 4+ MsDyx) cos(0) cos(p) = Hq cos(6g) cos(go)
+ Hu(egey) cos(é),
(H + MsDyy) cos(8) sin(¢) = Ho cos(6p) sin(gy)
+ Hu(esey) sin(¢),

(H + MgDg,) sin(6) = Hosin(6y). (8)

Let’s introduce two unit vectors e and e, complementing e;
to the right triple

e: = sin(0) cos(@)ey + sin(0) sin(p)ey — cos(0)e,,

e, = —sin(@)ey + cos(p)ey. 9)

Hamiltonian equations are written with respect to variables
called canonical [22]. Depending on the specific task, such
variables can be complex conjugate, as well as depend on
coordinates and time. When describing the dynamics of
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magnetization, canonical variables are most often associated
with the deviation of the vector m from its equilibrium po-
sition [14,15]. For spin waves, the canonical transformation
was first introduced by Holstein and Primakov [26]. In the
considered case, such a transformation may be written as

_ me—im
a_\/m. (10)

Here m:, m,, m; — Projections of vector m on the respec-
tive coordinate axes. The dimensionless variable a describes
the amplitude of the magnetization precession. The dynamic
equation for this variable in the studied case under will have

the form pa(r. ) SH
a(r, . a

= - — 11

ot ' Ja (11)

where
Ha = yE/(uoMs)

— normalized magnetic energy depending on the complex
amplitude a. We operate in the macrospin approximation
and neglect the spatial inhomogeneities of — magnetiza-
tion m. In this case a = a(t), which means that in equa-
tion (11) on the left side, it’s possible to write the full, not
the partial derivative. To switch from the Landau—Lifshitz
equation (1) to its Hamiltonian notation (11), it is necessary
to replace the basis ey, ey, e; with a new e, e, e, and take
into account the inverse transformation to (10)

m = (1-2af’),

me =/1-a?*(a+a’),

m, = —iy/1 —|a]*(a —a%). (12)

Expressions (12) can be obtained directly from (10), given
that the length of the magnetization vector is preserved
ms% + mg + mﬁ = 1. The energy Ha may be expanded into
a series by a dimensionless variable a near the minimum
of the magnetic energy. Let’s write down such a series,
taking into account terms not higher than 4 of the order of
smallness.

1 1
Ha = Ala]® + (5 Ba2+§ B*a*z) + (V]a]*a +V*|al*a*)

+Uilal* + (U]al*a® + U jalfa*?) +...  (13)

The expressions obtained for the coefficients of the se-
ries (13) are presented in Appendix A. Using the Hamil-
tonian Hj, it is possible to describe the dynamics of mag-
netization of ferromagnetic samples of various geometric
shapes. The resulting Hamiltonian (13) is very bulky to
analyze, so it is necessary to apply some transformations.
Let’s note that its quadratic part is not diagonal. It is
possible to simplify the quadratic part using Bogolyubov
transformation [27]. In the considered case, such a
transformation may be written as

a =ub— vb*, (14)

where

A+ wy
u= s

wo
A—a)()
v = s

wo

woy = A2 — |B|2

In such a replacement the series for the Hamiltonian will
look as follows

Hp = wo|b|* + (Wi [b|*b + W' [b[*b* +Wsb* + Wy'b*?)

+Tlb*+... (15)
Here
W, = —v*V*u + 2u(Vv — u*V*)u* + U2,

Wy = V*u*2 —VUV*,

4
T = (WU, —3uU;v*)u? -3 (UZUZ— 3 uU1U*+v*2U2*) vu*

—3v*Usuv? + v*2U v, (16)

Note that the diagonalization (14) is a canonical transforma-
tion, i.e., preserves the Hamiltonian form of the equations.
In this case, the conservative dynamic equation for the
complex amplitude b can be written as follows:

db _ . oMy

dt ~  9b*-

(17)

In (15), terms proportional to the third power of the
complex amplitude b can be excluded. However, it is
necessary to use a quasi-canonical nonlinear substitution
for this. This means that the Hamiltonian form will be
preserved only if the high-order terms are removed during
the decomposition of the Hamiltonian. As mentioned
earlier [14,15], the following nonlinear replacement may be
used:

1
b=c+— (Wic? — 2W[c* —W;c*?).  (18)
0

Under this transformation, the Hamiltonian takes the simple
form

N
He = wolc> + 5 lc|*, (19)

where non-isochronism coefficient is determined by the
expression

2 2
NZZ(T_3M>. (20)
(O]

The dynamic equation for a complex amplitude c
with Hamiltonian (19) takes the form

% = —iw(c/)c, (21)
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Figure 1. a — schematic view of a spherical ferromagnetic sample with a magnetization m when exposed to the magnetic field Hy. The
uniaxial anisotropy vector ey is directed along OX axis. b — non-isochronism coefficient of a sphere versus polar angle ® at which the

external magnetic field is applied.

where the precession frequency is expressed as

w(|c?) = wo + N|c|*. (22)
Here wy — eigen frequency, N — nonlinearity coefficient.
Thus, the nonlinearity coefficient determines the relationship
between the frequency and power |c|> of magnetization
precession in a ferromagnetic material. Note that a change
of |c|? is possible when an ultrahigh-frequency alternating
magnetic field is applied to the sample, which excites the
magnetization precession [28]. In this case, at N # 0, it is
possible to control the resonant frequency of a ferromagnetic
nanoparticle.

2. Calculations

Yttrium-iron garnet Y3;FesO1, was chosen as the material
from which ferromagnetic samples of various shapes were
made. The material in question is considered one of the
best among solid-state magnets, since it can be used to
study the dynamics of high-frequency magnetization due to
its extremely low Hilbert coefficient a, which can reach
about 5- 107> [29]. A sphere and a circular cylinder were
used as the studied geometries (Fig. 1,a and 2,a) of the
ferromagnetic samples. Components of the demagnetization
factor tensor for the sphere: Dyy = Dyy =Dz =1/3;
circular cylinder: Dyx = Dyy = 1/2, D;; =0. The fol-
lowing magnetic parameters of the material were used
for calculations: Mg =1.3-10°A/m, Hy, = 1.2 10> A/m,
e, =(1,0,0).

Because at different magnitudes and directions of the
external magnetic field vector applied to the ferromagnetic
nanoparticle, the direction of the ground state mg also
turns out to be different, in order to determine the non-
isochronism coefficient N for a given Hy it is necessary first
to solve the system (8) relative to the angles ¢, ® and only
then use the formulae (16), (20), ( Al). Therefore, when
plotting the graphs shown in Fig. 1,5, 2,b and 2,c, for

Technical Physics, 2025, Vol. 70, No. 6

each point the ground state was found separately using the
numerical solution (8).

3. Results

Let’s consider how the nonlinearity of ferromagnetic sam-
ples will change at different orientations and magnitudes of
the external magnetic field. Fig. 1,5 shows the dependence
of N for the sphere on the polar angle of external magnetic
field Hy. Note that N rearrangement in this case is possible
only due to the presence of uniaxial magnetic anisotropy. In
a homogeneous isotropic sphere, the magnetic energy at

Hoi = (Ho,. Ho,.. Ho, ), m || Hoy
doesn’t differ from the energy in state
Ho> = (Ho. Ho,,. Ho,,),  m || Hoy

and is determined only by the applied external magnetic
field. Hence, the coefficients energy expansion in terms of
amplitude |c| do not differ either. Moreover, it turns out
that for the sphere A = yHj, and all other coefficients of
the series for Ha (12) are zero, which means N =0. In
this case, when precession m is excited, there will be no
amplitude-phase conversion of noise in the ferromagnetic
sphere and a shift in the resonant frequency with a change
in the amplitude of magnetization oscillations, which makes
spherical elements promising frequency-selective elements
for use in spintronics devices. Yet, if there is magnetic
anisotropy in a spherical ferromagnetic sample, then it will
be possible to achieve a zero non-isochronism coefficient
using a magnetic field applied at a certain angle to the
anisotropy direction vector e,  Figures 2,b, ¢ show
the dependences of N for a straight circular cylinder on
the polar and azimuthal angles of the external magnetic
field Hp, respectively, at different values of this field.
Let’s consider the nonlinearity coefficient versus azimuth
angle @ at ©) =0. As Hy rises, the N(go) graph



1104 A.A. Matveev, O.Yu. Arkhipova, E.V. Reshetova, A.R. Safin, O.V. Kravchenko, S.A. Nikitov

a b
A 10_ T T _I T
Z == Hy=0.15MA/m
5 Hy=0.25MA/m
/_\ ©n —H0=1MA/m »
mo H =S 3
\ /I s 0f S
1 : % s oO
| ] -— - —
OPp A %0 o =
SATRe-a oy o}
7P __1-To
/ u -15 L 7.0 L L L L
X 0 20 40 60 80 0 20 40 60 80
\/ 0, deg g, deg

Figure 2. @ — schematic view of a cylindrical ferromagnetic sample with a magnetization m when exposed to the magnetic field Hp.
The uniaxial anisotropy vector ey is directed along OX axis. b — non-isochronism coefficient of N cylinder versus polar angle ©y of the
applied external magnetic field at azimuth angle @9 = 0. ¢ — N versus azimuth angle ¢o of external magnetic field at ©9 = 0.

becomes flatter and non-isochronism rearrangement area
AN = Npax—Nmin, found as the difference between the
maximum and minimum values N, decreases. This is
explained by the fact that at large external fields, the
contribution to energy from magnetic anisotropy becomes
small compared to Zeeman energy. And hence, magnetic
energy in case when strong external magnetic field is
applied along OX axis, i.e. Hy = (Hyp, 0,0) doesn’t much
differ from the magnetic energy when this field is applied
along QY axis i.e. when Hy = (0, Hy, 0). Now let’s consider
the dependence N(®p) at ¢y =0 (Fig. 2,b). Note that
achieving zero non-isochronism for such a cylinder is also
possible if an external magnetic field Hy is applied at a
certain angle to the plane of the cylinder base. If O is
nonzero, then, unlike a spherical sample, the rearrangement
of the nonlinearity coefficient is possible even in the absence
of uniaxial magnetic anisotropy. This is due to the fact
that the states m = (0, 0, 1) and m = (my, m, 0) differ in
energy E due to the presence of anisotropic contribution
from the dipole-dipole interaction to the total magnetic
energy. Indeed, the tensor of demagnetizing factors D for a
ferromagnetic cylinder is non-diagonal.

Conclusion

In this paper, an analytical expression was obtained
for the non-isochronism coefficient N of spherical and
cylindrical ferromagnetic nanoparticles where the energy
of the dipole-dipole interaction may be described using
a diagonal tensor of demagnetizing factors. Taking into
account uniaxial magnetic anisotropy in this expression
allows us to assert that if there is magnetic anisotropy
in a spherical ferromagnetic sample, then it is possible to
achieve a zero coefficient of nonlinearity when applying an
external magnetic field Hy at some angle to the direction
vector of this anisotropy. In addition, it was shown that
the magnetization fluctuations in a homogeneous isotropic
sphere are isochronous. For a sample having a straight
circular cylinder shape, the analysis of the expression

obtained showed that in such a geometry it is possible to
achieve a zero coefficient of nonlinearity when an external
magnetic field is applied at a certain angle to the plane of
the cylinder base.
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Appendix A

The coefficients of Hamiltonian expansion Ha, (13) in a
series with respect to the complex amplitude a have the
form

A= % 7 (Hucos()? cos(0)* — DyxMs cos(¢)? cos(6)*

+ MsDyy cos(@)? cos(0)* — MsDyy cos(6)?

+ Dz;Ms cos(6)* — DyxMs + MgDyy + 2H — Hy),
B= % v (iHysin(2¢) sin(6) + iMsDyy sin(2¢) sin(0)
+ Hycos(@)? cos(8)? — DyxMs cos(¢)? cos(6)?
— iMsDyx sin(2¢) sin(0) + MsDyy cos(@)* cos(6)?

— 2Hy cos()? + 2DxxMs cos(@)? — 2MgDyy cos(¢)?
—M;Dyy cos(6)*+D;;Ms cos(0)*+Hy—DxxMs+MsDyy ),
V = —p cos(0) (iHusin(¢) cos(p) — Hysin(6) cos(p)*

— iMsDyy sin(@) cos(@) + DxxMs sin() cos(¢)?
+iMsDyy sin(¢) cos(¢) — MsDyy sin(6) cos(¢)?
+ MsDyy sin(6) — MsD, sin(6)),
1

U = 37 (—3Hycos(9)? cos(0)*+3DxxMs cos(¢)? cos(6)?

— 3MsDyy cos(@)? cos(6)? + 3MsDyy cos(6)?

— 3D;;Ms cos(0)* — DyxMs — MgDyy + 2MsD; + Huy),
U, = —% v (iHysin(2¢) sin(6) + iMsDyy sin(2¢) sin(6)
4 Hy cos(@)? cos(8)? — DyxMs cos(¢)? cos(6)?

— iMgDyx sin(2¢) sin(0) + MsDyy cos(¢p)?* cos(6)*

— 2Hy cos(@)? + 2DyxxMs cos(@)* — 2MsDyy cos(@)?

—MsDyy cos(6)+DzzMs cos(0)* +Hy—DyxMs+MsDyy ).



