Effect of finely dispersed carbon black on the polyaniline electrochemical properties
Lobov I. A.
1, Nesov S. N.
1, Drozdova E.A.
2,31Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2Omsk State Technical University, Omsk, Russia
3
Email: LI__87@mail.ru, nesov55@mail.ru, ea_ntk@mail.ru
In this work, three-component electrode materials based on a composite of polyaniline with multi-walled carbon nanotubes and carbon blck were obtained, which are promising for supercapacitor electrodes. The method proposed in the work allows achieving a uniform distribution of polyaniline over the surface of carbon black particles in the form of layers with a thickness of ~ 5 nm, which ensures high porosity and specific surface area. It is shown that the presence of carbon black in the material composition leads to a decrease in the degree of defectiveness of the polymer structure. With an increase in the proportion of carbon black, the electrochemical characteristics of electrode materials increase: the speed capacity of the electrodes (up to 81%) and their cyclic stability (92%) compared to a composite that does not contain carbon black (25% and 78%, respectively). Keywords: composites, XPS, cyclic voltammetry, specific capacitance.
- J.-G. Wang, F. Kang, B. Wei. Prog. Mater. Sci. 74, 51 (2015)
- M.E. Sahin, F. Blaabjerg, A. Sangwongwanich. Energies 15, 3, 674 (2022)
- H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang. J. Power Sources 190, 2, 578 (2009)
- F.R. Simoes, L.O.S. Bulhoes, E.C. Pereira. Poli meros 19, 1, 54 (2009)
- H. Wang, J. Liu, Z. Chen, S. Chen, T.C. Sum, J. Lin, Z.X. Shen. Electrochimica Acta, 230, 236 (2017)
- H.D. Dawouda, T.M. Altahtamounia, M.M. Zaghoa, N. Bensalah. Mater. Sci. Nanotechnol. 1, 2, 23 (2017)
- M.H. Mostafa, E.S. Ali, M.S.A. Darwish. Mater. Chem. Phys. 291, 126699 (2022)
- L.G. Ghanem, M.A. Hamza, M.M. Taha, N.K. Allam. J. Energy Storage 52, Part A, 104850 (2022)
- T. Susi, T. Pichler, P. Ayala. Beilstein J. Nanotechnol. 6, 177 (2015)
- I.A. Lobov, N.A. Davletkildeev, S.N. Nesov, D.V. Sokolov. Tech. Phys. Lett. 48, 6, 40 (2022)
- C.M. Goodwin, Z.E. Voras, X. Tong, T.P. Beebe Jr. Coatings 10, 10, 967 (2020)
- D.J. Morgan. C.J. Carbon. Res. 7, 3, 51 (2021)
- M.C. Biesinger. Appl. Surf. Sci. 597, 153681 (2022)
- V.S. Kovivchak, A.V. Kazakov, S.N. Nesov, A.B. Arbuzov, M.V. Trenikhin, E.M. Oks. Vacuum 198, 110885 (2022)
- M. Ayiania, M. Smith, A.J.R. Hensley, L. Scudiero, J.-S. McEwen, M. Garcia-Perez. Carbon 162, 528 (2020)
- S.N. Nesov, V.V. Bolotov, E.V. Knyazev, S.N. Povoroznyuk. Nucl. Instrum. Meth. Phys. Res. B 525, 25 (2022)
- C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, Y. Cu. PLoS One 10, 12, e0144842 (2015)
- D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy. Appl. Surf. Sci. 217, 1-4, 181 (2003)
- I.V. Panasenko, M.O. Bulavskiy, A.A. Iurchenkova, Y. Aguilar-Martinez, F.S. Fedorov, E.O. Fedorovskaya, B. Mikladal, T. Kallio, A.G. Nasibulin. J. Power Sources 541, 231691 (2022)
- L. Sun, D. Miyagi, Y. Cai, A. Ullah, M.K. Haider, C. Zhu, M. Gopiraman, I.S. Kim. J. Energy Storage 61, 106738 (2023)
- H. Sun, S. Li, Y. Shen, F. Miao, P. Zhang, G. Shao. Appl. Surf. Sci. 501, 144001 (2020)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.