Physics of the Solid State
Volumes and Issues
Electronic state of iron atoms doped in germanium
Magkoev T. T. 1, Men Y.2, Behjatmanesh-Ardakani R. 3, Elahifard M. 3, Ashkhotov O. G. 4
1
2
3
4
Email: t_magkoev@mail.ru, men@sues.edu.cn, behjatmanesh@ardakan.ac.ir, mrelahifard@gmail.com, oandi@rambler.ru

PDF
To study the electronic state of iron atoms doped in germanium, a double film system Fe-Ge was formed under ultrahigh vacuum conditions, obtained by annealing a Fe layer deposited on a Ge film formed on the surface of a Mo(110) crystal. The results obtained using a combination of low-energy ion scattering spectroscopy (LEIS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and Anderson work function measurements indicate that the Fe-Ge double film formed in this way is characterized by a uniform distribution of Fe and Ge atoms over the film bulk. It is shown that a change in the relative content of Fe atoms leads to a significant change in their electronic state. The first measurements of the absolute charge of Fe atoms acquired by them when doped in germanium indicate that as the Fe content increases, the charge value systematically decreases from 0.34e for a single atom to 0.07e for the same Fe and Ge ratio. This is accompanied by a change in the length of the Fe^+-Ge- interatomic bond within the range from 0.141 nm to 0.118 nm. The latter, being evidence of structural transformations of Ge, characterized by a change in the lengths and angles of the lattice bonds, can be used to identify structural units of doped germanium at different concentrations of the doping component. Keywords: Thin films, doping, germanium, iron, electronic state, surface analysis methods.
  1. X.-Q. Liang, X.-J. Deng, S.-J. Lu, X.-M. Huang, J.-J. Zhao, H.-G. Xu, W.-J. Zheng, X.-C. Zeng. J. Phys. Chem. C 121, 7037 (2017). https://doi.org/10.1021/acs.jpcc.7b00943
  2. X.-J. Hou, G. Gopakumar, P. Lievens, M.T. Nguyen. J. Phys. Chem. A 111, 13544 (2007). DOI: 10.1021/jp0773233
  3. W.-J. Zhao, Y.-X. Wang. Chem. Phys. 352, 291 (2008). DOI: 10.1016/j.chemphys.2008.07.006
  4. F. Abyar, F. Bamdadi, R. Behjatmanesh-Ardakani. Comp. Theor. Chem. 1214, 113782 (2022). https://doi.org/10.1016/j.comptc.2022.113783
  5. X.-J. Deng, X.-Y. Kong, H.-G. Xu, X.-L. Xu, G. Feng, W.-J. Zheng. J. Phys. Chem. C 119, 11048 (2015). https://doi.org/10.1021/jp511694c
  6. L. Ottaviano, P. Parisse, M. Passacantando, S. Picozzi, A. Verna, G. Impellizzeri, F. Priolo. Surf. Sci. 600, 4723 (2006). DOI: 10.1016/j.susc.2006.07.042
  7. J. Wang, J.-G. Han. J. Phys. Chem. B 110, 7820 (2006). DOI: 10.1021/jp0571675
  8. I.N. Shabanova, V.I. Kormilets, L.D. Zagrebin, N.S. Terebova. Surf. Sci. 447, 112 (2000). https://doi.org/10.1016/S0039-6028(99)01152-8
  9. J. Wang, J.-G. Han. J. Chem. Phys. 123, 244303 (2005). DOI: 10.1063/1.2148949
  10. M. Schleberger. Surf. Sci. 445, 71 (2000). DOI: 10.1016/S0039-6028(99)01041-9
  11. Y. Jin, S. Lu, A. Hermann, X. Kuang, C. Zhang, C. Lu, H. Xu, W. Zheng. Sci. Rep. 6, 30116 (2016). https://doi.org/10.1038/srep30116
  12. R. Pillarisetty. Nature 479, 324 (2011). https://doi.org/10.1038/nature10678
  13. M.F. Jarrold, J.E. Bower. J. Chem. Phys. 96, 9180 (1992). https://doi.org/10.1063/1.462228
  14. A.K. Singh, V. Kumar, Y. Kawazoe. Phys. Rev. B 71, 075312 (2005). https://doi.org/10.1103/PhysRevB.71.075312
  15. J. Lu, S. Nagase. Chem. Phys. Lett. 372, 394 (2003). https://doi.org/10.1016/S0009-2614(03)00415-9
  16. V. Kumar, Y. Kawazoe. Phys. Rev. Lett. 88, 235504 (2002). https://doi.org/10.1103/PhysRevLett.88.235504
  17. C. Argile, G.E. Rhead. Surf. Sci. Rep. 10, 277 (1989). https://doi.org/10.1016/0167-5729(89)90001-0
  18. J.B. Pendry. Surf. Sci. Rep. 19. 87 (1993). https://doi.org/10.1016/0167-5729(93)90006-B
  19. J.T. Yates, Jr. Experimental Innovations in Surface Science. Springer, 2015. 655 p. ISBN 978-3-319-17667-3
  20. S.H. Payne, H.J. Kreuzer, A. Pavlovska, E. Bauer. Surf. Sci. 345, L1 (1996). https://doi.org/10.1016/0039-6028(95)00969-8
  21. S. Ossicini, R. Memeo, F. Ciccacci. J. Vac. Sci. Technol. A 3, 387 (1985). https://doi.org/10.1116/1.573226
  22. V.N. Ageev, Yu.A. Kuznetsov, T.E. Madey. Surf. Sci. 600, 2163 (2006). DOI: 10.1016/j.susc.2006.03.022
  23. J.R. Osiecki, R.I.G. Uhrberg. Surf. Sci. 603, 2532 (2009). https://doi.org/10.1016/j.susc.2009.05.028
  24. I. Brodie, S.H. Chou, H. Yuan. Surf. Sci. 625, 112 (2014). https://doi.org/10.1016/j.susc.2014.03.002
  25. G.C. Allen, P.M. Tucker, R.K. Wild. Surf. Sci. 68, 469 (1977). https://doi.org/10.1016/0039-6028(77)90240-0
  26. T.T. Magkoev, K. Christmann, P. Lecante, A.M.C. Moutinho. J. Phys.: Condens. Matter. 14, L273 (2002). https://doi.org/10.1088/0953-8984/14/12/107
  27. T.T. Magkoev, G.G. Vladimirov, D. Remar, A.M.C. Moutinho. Solid State Commun. 122, 341 (2002). https://doi.org/10.1016/S0038-1098(01)00511-7

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru