Formation of quasi-two-dimensional layers of bismuth nanoparticles in epitaxial layers of gallium arsenide
1,2, Bert N. A.
1, Ivanov A. A.
1, Snigirev L.A.
1, Ushanov V. I.
1, Preobrazhenskii V. V.
3, Putyato M. A.
3, Semyagin B. R.
3,
1, Chaldyshev V.V.
1 1Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: nikolay.bert@mail.ioffe.ru, aleksei98.ivanov@mail.ioffe.ru, leonidsnigirev17@gmail.com, ushanovvi@mail.ioffe.ru, pvv@isp.nsc.ru, puma@isp.nsc.ru, sbr@isp.nsc.ru, chald.gvg@mail.ioffe.ru
By delta-doping gallium arsenide layers with bismuth during low-temperature molecular beam epitaxy (MBE) followed by annealing, quasi-two-dimensional layers of bismuth nanoparticles were obtained in a matrix of epitaxial gallium arsenide. The low epitaxy temperature ensures the formation of a high concentration of nonstoichiometric defects in the material, primarily antisite defects [AsGa] and gallium vacancies. The migration of these defects during annealing leads to the formation of both small precipitates in the LT-GaAs layers and larger nanoinclusions enriched with bismuth, located on the Bi delta layers. Keywords: non-stoichiometric GaAsBi, molecular-beam epitaxy, precipitation, X-ray diffractometry, transmission electron microscopy, optical absorption.
- S.A. Maier. Plasmonics: Fundamentals and Applications. Springer, N. Y. (2007)
- L. Wang, M. Hasanzadeh Kafshgari, M. Meunier. Adv. Funct. Mater. 30, 51, 2005400 (2020)
- N. Rivera, I. Kaminer. Nature Rev. Phys. 2, 10, 538 (2020)
- A.N. Koya, M. Romanelli, J. Kuttruff, N. Henriksson, A. Stefancu, G. Grinblat, A. De Andres, F. Schnur, M. Vanzan, M. Marsili, M. Rahaman, A. Viejo Rodri guez, T. Tapani, H. Lin, B.D. Dana, J. Lin, G. Barbillon, R.P. Zaccaria, D. Brida, D. Jariwala, L. Veisz, E. Cortes, S. Corni, D. Garoli, N. Maccaferri. Appl. Phys. Rev. 10, 2, 021318 (2023)
- V.E. Babicheva. Nanomaterials 13, 7, 1270 (2023)
- B.P. Nanda, P. Rani, P. Paul, R. Bhatia. J. Pharmaceutical Analysis (2024). In press. https://doi.org/10.1016/j.jpha.2024.02.013
- A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne. J. Am. Chem. Soc. 127, 7, 2264 (2005)
- P. Mandal. Plasmonics 17, 3, 1247 (2022)
- I.I. Zamkoye, B. Lucas, S. Vedraine. Nanomaterials 13, 15, 2209 (2023)
- L. Agiotis, M. Meunier. Laser Photon. Rev. 16, 10, 2200076 (2022)
- R. Rajamanikandan, K. Sasikumar, S. Kosame, H. Ju. Nanomaterials 13, 2, 290 (2023)
- C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, X. Luo. Sci. Rep. 7, 1, 5652 (2017)
- M. Fleischmann, P.J. Hendra, A.J. McQuillan. Chem. Phys. Lett. 26, 2, 163 (1974)
- S. Bai, X.L. Ren, K. Obata, Y. Ito, K. Sugioka. Opto-Electron. Adv. 5, 10, 210121 (2022)
- Y. Wang, X. Xu, Y. Li, C. Li, X. Wang, J. Wu, Y. Li. Talanta 269, 125432 (2024)
- N.A. Toropov, I.A. Gladskikh, P.V. Gladskikh, A.N. Kosarev, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin, V.V. Chaldyshev, T.A. Vartanyan. J. Opt. Technol. 84, 7, 459 (2017)
- V.I. Ushanov, S.V. Eremeev, V.M. Silkin, V.V. Chaldyshev. Nanomaterials 14, 1, 109 (2024)
- V.I. Ushanov, V.V. Chaldyshev, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin. Semiconductors 50, 12, 1595 (2016)
- L.G. Lavrent'eva, M.D. Vilisova, V.V. Preobrazhenskii, V.V. Chaldyshev. Crystallogr. Rep. 47, 1, S118 (2002)
- V.V. Chaldyshev. Mater. Sci. Eng. B 88, 2-3, 195 (2002)
- M. Wu, E. Luna, J. Puustinen, M. Guina, A. Trampert. Nanotechnol. 25, 20, 205605 (2014)
- N. Balades, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, S.I. Molina. Nanoscale Res. Lett. 13, 125 (2018)
- R. Butkute, G. Niaura, E. Pozingyte, B. vCechavivcius, A. Selskis, M. Skapas, V. Karpus, A. Krotkus. Nanoscale Res. Lett. 12, 436 (2017)
- N.A. Bert, A.I. Weinger, M.D. Vilisova, S.I. Goloshchapov, I.V. Ivonin, S.V. Kozyrev, A.E. Kunitsyn, L .G. Lavrentieva, D.I. Lubyshev, V.V. Preobrazhensky, B.R. Semyagin, V.V. Tretyakov, V.V. Chaldyshev, M.P. Yakubenya. FTT 35, 10, 2609 (1993). (in Russian)
- X. Liu, A. Prasad, J. Nishio, E.R. Weber, Z. Liliental-Weber, W. Walukiewicz. Appl. Phys. Lett. 67, 2, 279 (1995)
- A. Janotti, S.H. Wei, S.B. Zhang. Phys. Rev. B 65, 11, 115203 (2002)
- B.R. Semyagin, A.V. Kolesnikov, M.A. Putyato, V.V. Preobrazhenskii, T.B. Popova, V.I. Ushanov, V.V. Chaldyshev. Semiconductors 56, 3, 201 (2022)
- A.R. Mohmad, F. Bastiman, J.S. Ng, S.J. Sweeney, J.P.R. David. Physica Status Solidi C 9, 2, 259 (2012)
- R. Kudrawiec, J. Kopaczek, M.P. Polak, P. Scharoch, M. Gladysiewicz, J. Misiewicz, R.D. Richards, F. Bastiman, J.P.R. David. J. Appl. Phys. 116, 23, 233508 (2014)
- J.I. Pankove. Optical Processes in Semiconductors. Dover Pub., N. Y. (1971). ISBN 0-486-60275-3
- G.M. Martin. Appl. Phys. Lett. 39, 9, 747 (1981)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.