Physics of the Solid State
Volumes and Issues
Formation of quasi-two-dimensional layers of bismuth nanoparticles in epitaxial layers of gallium arsenide
Polenok E.D.1,2, Bert N. A. 1, Ivanov A. A. 1, Snigirev L.A. 1, Ushanov V. I. 1, Preobrazhenskii V. V. 3, Putyato M. A. 3, Semyagin B. R. 3, Yagovkina M.A.1, Chaldyshev V.V. 1
1Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: nikolay.bert@mail.ioffe.ru, aleksei98.ivanov@mail.ioffe.ru, leonidsnigirev17@gmail.com, ushanovvi@mail.ioffe.ru, pvv@isp.nsc.ru, puma@isp.nsc.ru, sbr@isp.nsc.ru, chald.gvg@mail.ioffe.ru

PDF
By delta-doping gallium arsenide layers with bismuth during low-temperature molecular beam epitaxy (MBE) followed by annealing, quasi-two-dimensional layers of bismuth nanoparticles were obtained in a matrix of epitaxial gallium arsenide. The low epitaxy temperature ensures the formation of a high concentration of nonstoichiometric defects in the material, primarily antisite defects [AsGa] and gallium vacancies. The migration of these defects during annealing leads to the formation of both small precipitates in the LT-GaAs layers and larger nanoinclusions enriched with bismuth, located on the Bi delta layers. Keywords: non-stoichiometric GaAsBi, molecular-beam epitaxy, precipitation, X-ray diffractometry, transmission electron microscopy, optical absorption.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru