In this work, samples of molybdenum disulfide intercalated with iron atoms with different concentrations by the developed technology were synthesized for the first time and the results of original studies of electrical and magnetic properties of intercalated iron-containing materials depending on composition and temperature were presented. The obtained data demonstrate the activation character of conductivity in the system of intercalated FexMoS2 phases with a possible change in the mechanism of conductivity associated with the increase in the concentration of iron in the samples. The possibility of realization of antiferromagnetic state in compounds with different iron content based on the character of temperature dependences of magnetic susceptibility, negative values of paramagnetic Curie temperature and the form of temperature dependences of effective magnetic moments is shown. Keywords: molybdenum disulfide, iron, electrical resistance, magnetic susceptibility, effective magnetic moment.
- L.A. Chernozatonskii, A.A. Artyukh. Phys. --- Usp. 61, 1, 2 (2018)
- I.V. Antonova. Semiconductors 50, 1, 66 (2016)
- Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan, F. Wang, J. He. Adv. Mater. 31, 41, E 1901694 (2019). https://doi.org/10.1002/adma.201901694
- M. Inoue, H.P. Hughes, A.D. Yoffe. Adv. Phys. 38, 5, 565 (1989)
- N.V. Baranov, V.G. Pleshchev, A.N. Titov, V.I. Maksimov, N.V. Selezneva, E.M. Sherokalova. Nanotekhnika 3, 15 (2008). (in Russian)
- V.G. Pleshchev, N.V. Mel'nikova, N.V. Selezneva. Phys. Solid State 60, 7, 1287 (2018)
- E.M. Sherokalova, N.V. Selezneva, V.G. Pleshchev. Phys. Solid State 64, 4, 434 (2022)
- V.G. Pleshchev. Phys. Solid State 65, 8, 1300 (2023)
- E.P. Domashevskaya, D.L. Goloshchapov, H.I.D. Al Khailani, E.V. Rudnev, M.V. Grechkina, S.V. Ryabtsev. Semiconductors 53, 7, 923 (2019)
- E.S. Kadantsev, P. Hawrylak. Solid State Commun. 152, 10, 909 (2012). https://doi.org/10.1016/j.ssc.2012.02.005
- P.B. James, M.T. Lavik. Acta Cryst. 16, 11, 1183 (1963)
- P. Vaquero, M.L. Kosidowski, A.V. Powell. Chem. Mater. 14, 3, 1201 (2002). https://doi.org/10.1021/cm010720k
- S. Fu, K. Kang, K. Shayan, A. Yoshimura, S. Dadras, X. Wang, L. Zhang, S. Chen, N. Liu, A. Jindal, X. Li, A.N. Pasupathy, A.N. Vamivakas, V. Meunier, S. Strauf, E.-H. Yang. Nature Commun. 11, 1, 2034 (2020). https://doi.org/10.1038/s41467-020-15877-7
- International Centre for Difraction Data-ICDD-2012 [Powder Difraction Database --- PDF-2]. https://www.icdd.com
- P. Scardi, M. Leoni. Acta Cryst. A 57, 5, 604 (2001). https://doi.org/10.1107/S0108767301008881
- L.P. Pavlov. Metody izmereniya parametrov poluprovodnikovykh materialov. Vyssh. shk., M. (1987). 239 s. (in Russian)
- N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1971)
- V.G. Pleshchev, N.V. Baranov, N.V. Melnikova, N.V. Selezneva. Phys. Solid State 54, 7, 1348 (2012).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.