Formation and stabilization of dispersed "core-shell" structures as a result of solid-phase wetting
The use of alloying components to control the microstructure and inhibit the growth of precipitates during alloy decomposition is a promising method for developing new materials. However, in the analysis of decomposition kinetics and the mechanisms of "core-shell" structure formation, the effect of solid-phase wetting is rarely taken into account. It is traditionally believed that wetting is more characteristic of transformations involving a liquid phase. This work demonstrates that wetting is determined by the same interatomic interaction energies responsible for decomposition, and therefore should be considered in the analysis of transformations in multi-component alloys. Furthermore, the Kinetic Monte Carlo modeling automatically takes this effect into account, while diffusion phenomenological models often neglect it. Conditions for complete and partial solid-phase wetting are formulated. The conditions for stabilizing dispersed states of the alloy in the presence of wetting are investigated. Keywords: Ternary alloy, spinodal decomposition, dispersed states, Monte Carlo simulation, solid phase wetting.
- A. Deschamps, C.R. Hutchinson. Acta Materialia 220, 117338 (2021)
- Z. Xiong, I. Timokhina, E. Pereloma. Prog. Mater. Sci. 118, 100764 (2021)
- S.C. Wang, M.J. Starink. Int. Mater. Rev. 50, 4, 193 (2005)
- I.K. Razumov, Yu.N. Gornostyrev. Phys. Solid State 61, 12, 2493 (2019)
- I.K. Razumov, Yu.N. Gornostyrev. FMM. V pechati (2024). (in Russian)
- M.D. Mulholland, D.N. Seidman. Acta Materialia 59, 5, 1881 (2011)
- P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant. Acta Materialia 55, 14, 4877 (2007)
- Yu.N. Gornostyrev, M.I. Katsnelson. Phys. Chem. Chem. Phys. 17, 41, 27249 (2015)
- A. Shyam, S. Roy, D. Shin, J.D. Poplawsky, L.F. Allard, Y. Yamamoto, J.R. Morris, B. Mazumder, J.C. Idrobo, A. Rodriguez, T.R. Watkins, J.A. Haynes. Mater Sci. Eng. A 765, 138279 (2019)
- M.V. Petrik, Yu.N. Gornostyrev, P.A. Korzhavyi. Scripta Materialia 202, 114006 (2021)
- M. Perez, F. Perrard, V. Massardier, X. Kleber, A. Deschamps, H. de Monestrol, P. Pareige, G. Covarel. Phil. Mag. 85, 20, 2197 (2005)
- M.E. Fine, J.Z. Liu, M.D. Asta. Mater. Sci. Eng. A 463, 1-2, 271 (2007)
- I.K. Razumov, I.G. Shmakov. Phys. Solid State 61, 6, 952 (2019)
- I.N. Kar'kin, L.E. Kar'k-na, Yu.N. Gornostyrev, A.P. Korzhavyi. Phys. Solid State 61, 4, 601 (2019)
- E. Clouet, L. Lae, T. Epicier, W. Lefebvre, M. Nastar, A. Deschamps. Nature Mater. 5, 6, 482 (2006)
- A.Yu. Stroev, O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi. Comp. Mater. Sci. 218, 111912 (2023)
- J. Weissmu ller. Nanostruct. Mater. 3, 1-6, 261 (1993)
- J.R. Trelewicz, C.A. Schuh. Phys. Rev. B 79, 9, 094112 (2009)
- I.K. Razumov. Phys. Solid State 56, 4, 780 (2014)
- C. Liu, H. Chen, J.-F. Nie. Scripta Materialia 123, 5 (2016)
- L. Jiang, B. Rouxel, T. Langan, T. Dorin. Acta Materialia 206, 116634 (2021)
- M.F. Chisholm, D. Shin, G. Duscher, M.P. Oxley, L.F. Allard, J.D. Poplawsky, A. Shyam. Acta Materialia 212, 116891 (2021)
- B. Cheng, X. Zhao, Y. Zhang, H. Chen, I. Polmear, J.-F. Nie. Scripta Materialia 185, 51 (2020)
- A.M. Cassell, J.D. Robson, X. Zhou, T. Hashimoto, M. Besel. Mater. Charact. 163, 110232 (2020)
- P. Pandey, S.K. Makineni, B. Gault, K. Chattopadhyay. Acta Materialia 170, 205 (2019)
- I.K. Razumov. Russ. J. Phys. Chem. A 97, 3, 514 (2023)
- J.W. Cahn. J. Chem. Phys. 66, 8, 3667 (1977)
- P.G. de Gennes. Rev. Mod. Phys. 57, 3, 827 (1985)
- A. Oron, S.H. Davis, S.G. Bankoff. Rev. Mod. Phys. 69, 3, 931 (1997)
- D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley. Rev. Mod. Phys. 81, 2, 739 (2009)
- S. Ghosh, A. Mukherjee, T.A. Abinandanan, S. Bose. Phys. Chem. Chem. Phys. 19, 23, 15424 (2017)
- J. Becker, G. Grun, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey. Nature Mater. 2, 1, 59 (2003)
- X.-J. Cai, J. Genzer, R.J. Spontak. Langmuir 30, 39, 11689 (2014)
- B. Straumal, T. Lepkova, A. Korneva, G. Gerstein, O. Kogtenkova, A. Gornakova. Metals 13, 5, 929 (2023)
- B.B. Straumal. Fazovye perekhody na granitsakh zeren. Nauka, M. (2003). 327 s. (in Russian)
- B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, M. Faryna. Acta Materialia 56, 20, 6123 (2008)
- B.B. Straumal, O.A. Kogtenkova, A.B. Straumal, Yu.O. Kuchyeyev, B. Baretzky. J. Mater. Sci. 45, 16, 4271 (2010)
- B.B. Straumal. Fazovye perekhody na granitsakh zeren. Zhidkofaznoe i tverdofaznoe smachivanie, predsmachivanie, predplavlenie / Pod red. B.s. Bokshtejna. MISiS, M. (2004). 78 s. (in Russian)
- Ya.E. Geguzin, Yu.S. Kaganovsky. Diffuzionnye protsessy na poverkhnosti kristalla. Energoatomizdat, M. (1984). 128 s. (in Russian)
- Ya.E. Geguzin, Yu.S. Kaganovskii. Sov. Phys. Usp. 21, 7, 611 (1978)
- J.W. Cahn, J.E. Hilliard. J. Chem. Phys. 28, 2, 258 (1958)
- A.G. Khachaturyan. Teoriya fazovykh prevraschenij i struktura tverdykh rastvorov. Nauka, M. (1974). 384 s. (in Russian)
- G. Kaptay. Langmuir 33, 40, 10550 (2017)
- C. Sagui, R.C. Desai. Phys. Rev. Lett. 71, 24, 3995 (1993)
- G. Gonnella, E. Orlandini, J. Yeomans. Phys. Rev. Lett. 78, 9, 1695 (1997)
- G. Gonnella, E. Orlandini, J. Yeomans. Phys. Rev. E 58, 1, 480 (1998)
- D.J. Eyre. SIAM J. Appl. Math. 53, 6, 1686 (1993)
- J.W. Christian. The Theory of Transformations in Metals and Alloys. Pergamon Press (1965)
- L.Q. Chen. Acta Metallurgica et Materialia 42, 10, 3503 (1994),
- K. Kawasaki. In: Phase Transitions and Critical Phenomena / Eds C. Domb, M.S. Green. Academic, N.Y. (1972). V. 2. 443 p
- M. Petrik, I. Razumov, Yu. Gornostyrev, I. Naschetnikova, A. Popov. Mater. 15, 16, 5722 (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.