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The use of alloying components to control the microstructure and inhibit the growth of precipitates during alloy

decomposition is a promising method for developing new materials. However, in the analysis of decomposition

kinetics and the mechanisms of
”
core−shell“ structure formation, the effect of solid-phase wetting is rarely taken

into account. It is traditionally believed that wetting is more characteristic of transformations involving a liquid

phase. This work demonstrates that wetting is determined by the same interatomic interaction energies responsible

for decomposition, and therefore should be considered in the analysis of transformations in multi-component

alloys. Furthermore, the Kinetic Monte Carlo modeling automatically takes this effect into account, while diffusion

phenomenological models often neglect it. Conditions for complete and partial solid-phase wetting are formulated.

The conditions for stabilizing dispersed states of the alloy in the presence of wetting are investigated.
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1. Introduction

Metastable dispersed states occurred during alloys de-

composition under elevated temperature with further quick

cooling are of stable interest due to high operating pro-

perties of the obtained materials [1–3]. At that use

of doping components is a promising method to control

the structural state occurred during decomposition of the

alloy [4–7]. Thus, in alloy Al-Cu high strength properties

are achieved as result of formation of Guinier−Preston

zones and degrade during the transformation of growing

precipitates θ′ → θ [8]. Stabilization of precipitates of

phase θ′ is achieved due to additions of Mn or Zr, their

atoms segregate at interfaces [9,10]. In alloy αFe-Cu

spinodal decomposition starts in the BCC lattice with the

formation of metastable precipitates αCu [11–13], their

lattice is re-arranged into FCC when size of precipitates

reaches ∼ 10 nm, this is accompanied by decrease in

strength properties. Decelerating of growth of precipitates

αCu can be ensured by additions of Ni and Al, their

concentration increases at interfaces [14]. In alloy Al-Sc

strength increases due to formation of precipitates Al3Sc

and decreases with their growth. Doping with Zr leads

to implementation of particles of intermediate composition

Al3ScxZr1−x , at that during their formation Zr forms

non-equilibrium shell around the core of enriched Sc,

decelerating growth of precipitates [15,16]. Thus, it is

known from experiments and atomistic modeling that

dispersed states arising at the intermediate stage of alloy

decomposition can be stabilized by doping as a result of the

formation of structures
”
core−shell“. But during analysis of

the decomposition kinetics and mechanisms of formation of

structures
”
core−shell“ the effect of solid-phase wetting is

rarely considered. It is traditionally assumed that wetting

is typical more likely for transformations involving the

liquid phase.

Three main mechanisms ensuring formation of such struc-

tures were discussed. The first mechanism was suggested

by Weissmuller under the theory of grain-boundary segrega-

tions [17,18]. If the impurity segregation energy at the grain

boundary is higher the critical value, the equilibrium grain

size occurs, it is determined by average concentration of the

impurity. These concepts are easily transferred to the case

of impurity segregations at interfaces with broken coherence:

if the impurity segregation energy at the interface is higher

the critical value, the equilibrium size of precipitates arises,

depending on the average impurity concentration [19].
The phenomenon was identified by experiments in alloy

Mg-Sn-Zn, where precipitates Mg2Sn stabilize in size due

to segregation of Zn atoms at interface [20]. Segregations

on interfaces are observed also in alloys Al-Cu [21,22],
Al-Zn-Mg [23,24], Al-Ni-Zr [25], though their stabilizing

role in the decomposition is less clear in these cases.

Another mechanism of dispersed states stabilization is

that primary precipitates can stimulate the formation of

secondary precipitates enriched with low-mobility compo-

nent in the form of a continuous or discontinuous shell,

due to which the primary precipitates are isolated from the

matrix and their growth rate decreases [4]. Finally, under

third possible scenario the shell represents non-equilibrium

near-boundary, layer of solid solution enriched with low-

mobility doping component [26], formed on the intermedi-

ate stage of decomposition and dissolved (with transition to
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equilibrium phases) during long-term holding. Qualitatively

similar non-equilibrium shells are realized, for example, in

the alloy Al-Sc-Zr [15,16]. In paper [26] the possibility was

discussed of formation of non-equilibrium shells enriched

with nickel around precipitates of Ag during decomposition

in alloy Cu-Ag-Ni in some temperature range.

In above mechanisms of stabilization of dispersed

states the absence of interaction between boundaries of

precipitates (or concentration heterogeneities) of different

types was supposed. In particular, in paper [4] the

surface energy of precipitates A is determined by the

concentration gradient (∇cA)2 in free energy functional,

and does not depend on whether the precipitate A is

in contact with matrix or with precipitate B forming

the shell. However, from literature the wetting phase

transition is known [27–30], which means that droplet B

keeps round shape or spreads over sibstrate surface A

depending whether or not the total energy of boundaries

decreases as result of wetting. In model approaches such

interaction of boundaries of precipitates can be consid-

ered by contribution of form (∇cA∇cB) in free energy

functional. Previously in paper [31] during numerical

solution of Chan−Hillird equations for three-component

alloy we observed greater or lesser wetting of stationary

particles introduced into the alloy in advance, depending

on the ratio of the energy coefficients before the gradient

contributions in the free energy functional. In experiments

the wetting phase transition was observed for liquids on

the surface of substrates [32,33], during contact of the

solid phase with grain boundaries [34–38] and during the

decomposition of solid films [39,40]. It looks like that

experimental data on wetting phase transition on interfaces

of precipitates during alloy decomposition are currently

absent. In significant degree this can be associated with

problem of interpretation of the experimental facts, as

except wetting other factors exist (segregations on interfaces,

kinetic parameters), responsible for formation of structures

”
core−shell“ [4,19,26].

In present paper it is shown that trend of wetting is

intimately connected with the potentials of interatomic

interactions, in general case no suppositions are necessary

for lattice distortions near the interface, and, therefore,

it shall be considered during analysis of transformations

in multi-component alloys. Complete or partial wetting,

or its absence are implemented at different ratios of the

same energy parameters that determine the decomposition

thermodynamics. The conclusions are illustrated by Monte

Carlo simulations of the decomposition, which automatically

take into account the contribution into energy responsible

for wetting. Conditions are studied of stabilization of dis-

persed states arising during decomposition upon complete

or partial wetting.

2. Conditions of solid-phase wetting

Ginzburg−Landau (G−L) functional of free energy of

binary alloy mixing has view [41,42]:

F =

∫

(

f (cA) + σR2(∇cA)2
)

dV, (1)

where concentrations of components are linked by the

conditions cA + cB = 1; f (cA, cB) — density of free energy

of homogeneous alloy mixing; R — small parameter of

about radius of interatomic interaction, σ — energy coeffi-

cient determining surface energy. The gradient contribution

in (1) describes interaction of concentration heterogeneities

of component A. σ > 0 selection means energy advantage

of coarsening over time of the microstructure arising during

decomposition from homogeneous initial state, i. e. the

presence of precipitates coalescence. Opposite situation

σ < 0 is possible, for example, in microemulsions [43], col-
loidal suspensions and dipole liquid mixtures with Coulomb

interaction [44]; in this case equilibrium droplet or lamellar

structures [45,46] are formed, for their correct description

additional contributions in formula (1) are required.

In case of three-component ABM-alloy the formal gene-

ralization (1) has view [47]:

F =

∫

(

f ({cA}) + R26α,βκα,β(∇cα∇cβ)
)

dV, (2)

where αβ = {A,B,M}. Using condition cA + cB + cM = 1,

let’s rewrite (2), excluding variable cM:

F =

∫

(

f ({cA, cB}) + R2

×
[

σA(∇cA)2 + σB(∇cB)2 + σAB(∇cA∇cB)
])

dV, (3)

where σA = κAA + κMM − 2κAM, σB = κBB + κMM − 2κBM,

σAB = 2(κMM + κAB − κAM − κBM). Coefficients κA(B) de-

termine energy of interfaces of precipitates A(B) in ma-

trix M, and coefficient σAB — change in surface energy

during contact of precipitates A and B.

During analysis of the alloys decomposition the rea-

sonable demand is σA(B) > 0, this means absence of

energy advantage of concentration gradients formation of

components A or B (i. e. dispersed states) in absence of

stimulus for alloy decomposition, determined by type of

free energy density f (cA, cB). the exception is the case

when impurity segregation at the interface occurs (usually
as a result of violation of the lattice coherence) [19,20],
then σA = σ 0

A − ξcB, so at ξ above the critical value the

coefficient σA becomes negative, and in alloy equilibrium

dispersed states can occur.

At the same time, coefficient σAB can be both above,

and below zero, this is does not require any specific

suppositions. σAB > 0 selection means presence of partial

wetting between components A and B; if σAB is higher

the critical value, the full wetting phase transition can be
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implemented, when one of precipitates spreads over the

surface of another one [27,28].

Density of free energy of mixing in formula (2) contains

contributions of enthalpy and entropy

f (cA, cB) = Hmix − T Smix, (4)

which can be determined under model of regular solid

solution [4,48]:

Hmix = −νABcAcB − νAMcAcM − νBMcBcM, (5)

Smix = −k6αcα ln cα (6)

where ναβ — energy of interaction of atoms of types α

and β . Using condition cA + cB + cM = 1, we can trans-

form (5) as follows

Hmix = −νAMcA − νBMcB + νAMc2
A + νBMc2

B + νcAcB,

(7)
where ν = νAM + νBM − νAB. Since the expressions for the

fluxes of atoms are determined by the gradients of chemical

potentials ∇(δF/δcα) [48], in the absence of concentration

dependence of values ναβ , first two terms in (7) do not

contribute to fluxes and can be omitted.

Under phenomenological approach (1)−(7) coefficients

ναβ and σA(B), σAB are independent. But in fact in absence

of lattice distortions values σA(B), σAB can be expressed via

the energies of interatomic interactions ναβ . For this like in

paper [26] let;s present the alloy energy in node r as

E(r) = 6αEα(r)cα(r), (8)

at that energy of atom of type α is determined by

summation of energies of pair interaction φαβ(r) by nodes k
of entire lattice:

Eα(r) = 6β6kφ
αβ(ξk)cβ(r + ξk). (9)

Performing in (9) expansion in terms of ξk , we obtain:

Eα(r) = 6β8αβ

(

cβ(r) + R21cβ(r)
)

, 8αβ = 6kφ
αβ(ξk).

(10)
where small parameter R characterizes effective radius of

interatomic interaction, and for simplicity we assume it

independent from atom type. The first term in (10) ensures

determination of the mixing enthalpy

Hmix = 6α,β8αβcα(r)cβ(r) − 6α8ααcα(r), (11)

this leads to formula (5), at that interaction energies are

expressed via values of pair potentials

ναβ = 8αα + 8ββ − 28αβ , (12)

ναβ < 0 selection means presence of thermodynamic

stimulus for decomposition between components α, β .

Second term in (10), after substitution to (8) and integration

over volume determines the gradient contribution in energy

of concentration heterogeneities into G−L functional:

Fs = R2

∫

(

6α,β8αβcα(r)1cβ(r)
)

dV. (13)

As it was shown in [42] using Gaussian theorema, for

contributions in free energy functional the relationship is

valid
∫

η(c)1cdV = −
∫

(

∇η(c)
)

(∇c)dV, (14)

where η(c) — random function of component concentra-

tion. Then the expression (13) is converted to the form

Fs = −R2

∫

[

νAM(∇cA)2 + νBM(∇cB)2 + ν(∇cA∇cB)
]

dV,

(15)
Comparing (15) and (3) we find

σA = −νAM, σB = −νBM, σAB = −ν,

ν = νAM + νBM − νAB. (16)

In absence of the final decomposition trend (ναβ > 0) the
formula (15) forecasts the non-physical result — concentra-

tion gradients increasing. Presumably, this is associated with

the fact that occurred in alloy at ναβ > 0 the ordering trend

due to re-distribution of atoms α, β between sublattices

contradicts to supposed in (9) monotonous change in

concentrations upon movement from the node r. Thus,

from (15), (16) it follows that this approach is valid only

in case when there is decomposition trend for all pairs of

components, i. e. ναβ < 0. From this the formal limitation

for wetting energy appears, σAB < σA + σB.

The wetting phase transition means that precipitate B

spreads over surface of precipitate A, if for interface energies

the ratio is met SBM + SAB < SAM [28,35], this means that

total energy of two interfaces B−M and A−B is lower than

energy of single interface A−M. Link between energy of

precipitate boundary and coefficient σ before the gradient

contribution in G−L functional was determined in [42]. If

components precipitate in pure form, and boundary width

tends to zero, a rough estimate of SAM ∝ σA, SBM ∼ σB,

SAB ∼ σA + σB − σAB is possible. From here the condition

of full wetting is σAB > 2σB, or via energy of interatomic

interactions

νAB > νAM − νBM (17)

or

ν < 2νBM. (18)

As in this model ναβ < 0, formula (17) means that as

wetted substrate only component with large energy stimulus

for decomposition in matrix can be used. At this the

stimulus for mutual decomposition of components A, B

(forming structure
”
core−shell“) shall be below the critical

value.

Formula (16) expresses coefficients σA(B), σAB via inter-

action energies ναβ in case of ideal lattice. But actually for

interfaces the partial violation of lattice coherency is typical,
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it contributes both to surface energies of precipitates A, B

in matrix, and to their wetting energy. So, generally

replacement is possible

σ̃A(B) = σA(B) + σ ∗
A(B), σ̃AB = σAB + σ ∗

AB, (19)

where σ ∗
A(B), σ

∗
AB — corrections to coefficients σA(B), σAB,

determined by specific nature of structure of interfaces in

actual alloy. Above mentioned limitation σAB < σA + σB, in

general, should not be mandatory met for σ̃A(B), σ̃AB.

Previously in article [4] mechanisms of formation and

stabilization of dispersed state in three-component alloy

were considered, including structure of type
”
core−shell“

in supposition σ̃AB = 0, i. e. in absence of wetting. It

turned out that even in this case, there are conditions

when a shell in the form of phase of another type appears

around the precipitates of one type, significantly slowing

down the further growth of the precipitates. In paper [31]
wetting of previously introduced in alloy fixed particles

was studied. At that coefficients ναβ and σA(B), σAB

under the phenomenological approach were considered as

independent. In this paper we will study structures occurred

during alloy decomposition from homogeneous state at

different ratio of energy coefficients σA(B), σAB determined

by formulas (16).

Cahn−Hilliard continual equations [41,49] with G−L

functional (3) suppose smooth change in concentrations on

interfaces and are not well suitable to describe thin layers of

substance during wetting phase transition. Moreover, under

phenomenological approach during analysis of the multi-

component alloy it is difficult to determine correctly the

kinetic coefficients in expressions for atom fluxes, at that

equation obtained under microscopic theory are rather cum-

bersome [26]. So, in present paper for numerical analysis

another approach is used [19], when instead of solution of

continual equations of diffusion the decomposition modeling

by kinetic Monte Carlo method [50].

3. Algorithm of modeling by kinetic
Monte Carlo method

Let’s consider 2D-model of ABM-alloy with simple

square lattice. Let’s n(i)
α = 1, if in node i atom of type α

present, and n(i)
α = 0 in opposite case; 6αn(i)

α = 1. Hamilto-

nian of interaction in node i , determined by occupation

numbers n(i)
α on discrete lattice, automatically considers

surface contributions to energy σA(B), σAB and has view

corresponding to mixing enthalpy (5):

H(i)
int =

∑

i′ 6=i

[

−ν
(i ;i′)
AB n(i)

A n(i′)
B − ν

(i ;i′)
AM n(i)

A n(i′)
M − ν

(i ;i′)
BM n(i)

B n(i′)
M

]

,

(20)

where ν
(i ;i′)
αβ — interaction energy of atoms of type α

and β at distance determined by nodes i, i ′. Let’s radius

of interaction of atoms is 3 coordination spheres (CS), i. e.

each atom interacts with 12 neighbors; ν
(k)
αβ — interaction

energy of atoms α and β on k-th sphere.

The kinetic Monte Carlo algorithm for three-component

alloy is as follows [51]. A pair of neighboring atoms of

different types is randomly selected. Energies of initial

configuration and after re-arrangement of these atoms are

calculated, E1 and E2. Probability of places exchange of

selected atoms depends on their type, and on values of

energies E1 and E2. It is accepted that exchange of atom

with larger diffusion mobility and matrix atom is imple-

mented with Metropolis probability: new configuration is

accepted definitely, if E2 < E1; otherwise it is accepted with

probability P = exp[(E1 − E2)/(kBT )]. Exchange of atom

with lower diffusion mobility and another atom (matrix

or impurity) is implemented with Metropolis probability

multiplied by ratio of amplitude frequencies of low-mobility

and high-mobility components. After this the algorithm is

repeated. The entropy contribution (6) in free energy is

automatically considered by this procedure. For simplicity

and clearness we assume that amplitude frequencies of ex-

change ωαβ do not depend on concentrations, in particular,

they are same in matrix and in bulk of precipitates of one

or another type.

For easy analysis of decomposition kinetics we introduce

function ρα(τ ):

ρα(τ ) =
S(dec)
α (τ )

S(disp)
α (τ )

,

S(dec)
α (τ ) =

1

K
6i h

(

c(i)
α (τ ) − 0.5

)

,

S(disp)
α (τ ) =

a2

K
6i

(

∇c(i)
α (τ )

)2
, (22)

where function S(dec)
α (τ ) describes evolution of degree of

decomposition (portion of atoms of type α in precipitates),

S(disp)
α (τ ) describes degree of dispersion of precipitates

(proportional to total area of their surface), h(x) —
Heaviside function, K — number of lattice nodes, local

concentration of atoms of type α determined by formula

c(i)
α =

∑

i′∈3CS

n(i′)
α

13
.

From these definitions we see that function ρα(τ ) if

proportional to average size of precipitate of type α, in ratio

to width of interface.

Dimensionless time τ is evaluated as weighed average by

re-arrangements of different types

τ =
τABNAB + τAMNAM + τBMNBM

NAB + NAM + NBM

, (23)

where Nαβ — number of implemented re-arrangements of

atoms of types α and β, ταβ — evaluation of time by

appropriate re-arrangements

ταβ =

( Nαβ
∑

k=1

t(k)
αβ

)

/ (

c0
αc0

βK2
)

, (24)
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a b

c d

Figure 1. Characteristic decomposition patterns of three-component alloy at time corresponding to 3000 hops on average per atom of

type A, c0
A = c0

B = 0.2,
ωAB

ωAM
= ωBM

ωAM
= 1;

ν
(1,2,3)

AM

kT = −0.4,
ν

(1,2,3)

BM

kT = −0.16; σ ∗

A(B) = σ ∗

AB = 0; ν(1,2,3)

kT = a) −0.6, b) −0.4, c) −0.24, d) 0.08.

 20

 30

 40

 50

 60

 70

 80

 0  0.2  0.4  0.6  0.8  1.0

1

2

3

4

5

2

3

1, 4

5

1, 2, 4

3

5

τ

ρ
A

a

 20

 30

 40

 50

 60

 70

 80

 0  0.2  0.4  0.6  0.8  1.0
τ

ρ
A

b

 20

 30

 40

 50

 60

 70

 80

 0  0.2  0.4  0.6  0.8  1.0
τ

ρ
A

c

Figure 2. Evolution of function ρA(τ ), characterizing average size of precipitates, at
ωAB
ωAM

= ωBM

ωAM
= 1 (curve 1), 10−2 (curve 2),

10−4 (curve 3), 10−5 (curve 4), in absence of component B (dashed curve 5). Values of rest parameters correspond

to a) Figure 1, b (complete wetting), b) Figure 1, c (partial wetting), c) Figure 1, d (absence of wetting).
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where c0
α(β) — average over sample concentrations of

atoms of types α and β, t(k)
αβ — time corresponding to re-

arrangement of one pair of atoms at k-th iteration:

t(k)
αβ =

[

ωαβ

max({ωαβ})
P(k)
αβ

]−1

, (25)

where Pαβ — Metropolis probability, ωαβ — amplitude

frequencies of exchange.

4. Modeling results

Let’s consider the alloy in which there are stimuli for

decomposition by components A and B in matrix, at

that for definiteness the stimulus for decomposition for

component A is higher i. e. νAM < νBM < 0. Figure 1

presents typical patterns occurred as result of such alloy

decomposition upon start-up from homogeneous initial

state, with different selection of energy ν , which determines

wetting energy σAB (see formula (16)). Mobility of atoms

of different types were selected similar. Atoms of type A

hereinafter are shown in black, atoms B — white, atoms

of matrix M — gray. Calculations were performed for

square area with size 200× 200, with periodic boundary

conditions.

You can see that structure
”
core−shell“ is implemented

in range of intermediate values ν , that complies with the

condition (18), at that
”
core“ is formed from compo-

nent A having larger energy stimulus for decomposition

(Figure 1, b). Precipitates of component A grow without

limit with time, so during long-time holding there is excess

of component B near interface, due to this width of shell

can significantly vary along the interface.

When selecting ν < νAM + νBM due to definition (16)
energy νAB is positive, this is allowed during Monte Carlo

modeling and leads to formation of precipitates of mixed

composition A-B (Figure 1, a). When selecting ν > 2νBM
condition of complete wetting is violated (18). In this

case the occurred structure depends on sign of value ν . If

condition ν < 0 is met, the partial wetting is implemented:

at initial stages chains are formed, and then clusters of

alternating precipitates of types A and B (Figure 1, c).
If ν > 0, even partial wetting has no energy advantages,

therefore isolated from each other (separated by a layer of

matrix phase) precipitates of types A and B are observed in

the matrix (Figure 1, d).
Let’s consider further the kinetics of formation of struc-

ture
”
core−shell“ (corresponding to Figure 1, b) at different

ratio of diffusion mobilities of components. Figure 2, a

shows graphs of evolution of function ρA(τ ), characterizing
average size of precipitates (see formulas (22)−(25)) at

different values of ωAB

ωAM
(curves 1−4), and, for comparison,

in absence of component B (dashed curve 5). We can see

that at high mobility of component B its addition to allow ac-

celerates nucleation and growth of precipitates A (curve 1).
The decrease in the mobility of component B, down to

some optimal value, leads to deceleration of the growth of

precipitates A (curves 2, 3), because the shell, enriched with

the low-mobility component B, isolates precipitates A from

the matrix. Thus, growth of precipitates of component A

almost stop at optimal value ωAB

ωAM
(curve 3). The further

decrease in the mobility of component B is accompanied by

the acceleration of the growth of precipitates A, to values

close to those observed in the absence of component B

(curve 4). This occurs due to the cause that low-mobility

component B is captured in volume of precipitates A during

their growth.

It is interesting to note that in the absence of deceleration,

the evolution of the size of precipitates A follows the usual

law ∼
√

Dt (D — diffusion coefficient of component A),
i. e. growth rate decreases with time. Therefore, a

situation is possible when at some point of time the

growth rate of precipitates A becomes insufficient to capture

component B into the volume of precipitates, which leads to

the formation of the shell around them, which is enriched

with component B, and, consequently, to sharp decrease

in their growth rate. Just this situation is implemented for

the curve 3, where in section τ < 0.1 the component B is

captured in the volume of growing precipitates A, and at

τ > 0.1 around precipitates the shell is formed decelerating

their growth. Thus, varying ratio ωAB

ωAM
we can change the

characteristic size of precipitates, when it is reached the

shell is formed stabilizing the reached state.

Figure 2, b presents similar calculation corresponding

to situation of partial wetting (Figure 1, c); we can see

that qualitative features of behavior of function ρA(τ ) are

kept. Finally, Figure 2, c presents calculation of ρA(τ ),
corresponding to absence of wetting (see Figure 1, d). We

can see that deceleration of decomposition for component A

upon addition of low-mobility component B is again imple-

mented. In latter case at low values of ωAB

ωAM
the main cause

of deceleration is the interaction of growing precipitates with

impurity atoms, and at high values of ωAB

ωAM
— deceleration of

coalescence in system of alternating precipitates of types A

and B. Scenario of stabilization of precipitates, not requiring

wetting, were considered earlier [4]. We can state that the

decomposition deceleration is ensured in all cases by the

optimal ratio of the mobilities of the components, whereas

the wetting tendency, strictly speaking, is not a necessary

condition for stabilizing the dispersed state.

Figures 3 and 4 present characteristic patterns of initial

stages of decomposition under complete wetting (Figure 3)
and in absence of wetting (Figure 4) at ωAB

ωAM
= ωBM

ωAM
= 10−4.

In both cases the decomposition starts from capturing of

atoms of type B into volume of precipitates A. At more

developed stage these atoms are displaced into the near-

boundary region. When completely wetted, this shell is

continuous, whereas in the absence of wetting it is discon-

tinuous and tends to further breaking during the holding

process. Thus, patterns of initial stages of decomposition

with and without wetting at selected parameters are in some

degree similar, this leads to deceleration of decomposition

in both cases.
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a b c

Figure 3. Kinetics of initial stages of decomposition of three-component alloy under conditions of complete wetting at
ωAB
ωAM

= ωBM

ωAM
= 10−4; rest parameters correspond to Figure 1, b. τ = a) 0.04, b) 1, c) 4.

a b c

Figure 4. Kinetics of initial stages of decomposition of three-component alloy without wetting at
ωAB

ωAM
= ωBM

ωAM
= 10−4; rest parameters

correspond to Figure 1, d. τ = a) 0.04, b) 1, c) 4.

a b c

Figure 5. Kinetics of decomposition of three-component alloy under conditions of wetting at δν/(kBT ) = 2; rest parameters correspond

to Figure 1, b. τ = a) 0.2, b) 2, c) 4.

Finally, let’s consider the case when additional contribu-

tion in the wetting energy is determined by lattice distortions

near the interface (see formula (19)). Although Monte

Carlo modeling is performed on ideal lattice, the additional

contribution in wetting energy near the interface can be

considered by replacement of ν → ν−δνa2(∇c2
A, at that

concentration gradient in node i is expressed via occupation

number, ∇x c(i)
α = nα(x (i)+a)−nα(x (i)−a)

2a . Figure 5 presents the

Physics of the Solid State, 2024, Vol. 66, No. 9
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kinetics of decomposition in situation similar to Figure 1, b

(complete wetting), with selection of δν higher some critical

value, at which the surface energy of precipitates A becomes

negative. To better distinguishing of small details, the size

of the calculation area was reduced to 100 × 100. It can

be seen that the morphology of the precipitates differs

significantly from Figure 1, b: at the initial stage, component

A precipitates are formed in the form of thin lamellae,

surrounded by the shell of component B. During further

evolution instead of coarsening the precipitates A their

branching, then nucleation of colonies out of alternating

lamellae A and B are implemented. This situation can

be called a double-wetting phase transition, since not only

component B spreads over surface A, but also component A

spreads over surface B. Additional calculations show that

the width of the lamellae from component A in this case

increases with decrease in the average concentration of

component B in the alloy.

5. Conclusion

Conditions of complete and partial wetting of precipitates

during decomposition of tree-component alloy are deter-

mined. It is shown that in absence of lattice distortions

the wetting energy is expressed via values of pair potentials

in the lattice nodes. The kinetic Monte Carlo modeling

method automatically considers this contribution to energy

and allows us to study the decomposition of the alloy

taking into account wetting, whereas phenomenological

models using continual equations of diffusion often do not

take it into account or consider the corresponding energy

coefficients as independent parameters.

Kinetics of growth of precipitates of component A

is studied in conditions of complete and partial wetting

by component B at different ratio of diffusion mobilities

of components. It is shown that shell enriched with

low-mobility component B, occurring under conditions of

complete wetting, can significantly decelerate the growth

of precipitates A, isolating them from matrix. At that the

minimum size of precipitates A is reached at optimal value

of mobility of component B.

The double-wetting phase transition is predicted, which

is realized if lattice distortions near the interface provoke

additional contribution to the wetting energy, above a certain

critical value.

Funding

The study was carried out within the framework of the

State Assignment on the topic
”
Structure“ No. AAAA-A18-

118020190116-6.

Conflict of interest

The author declares that she has no conflict of interest.

References

[1] A. Deschamps, C.R. Hutchinson. Acta Materialia 220, 117338

(2021).
[2] Z. Xiong, I. Timokhina, E. Pereloma. Prog. Mater. Sci. 118,

100764 (2021).
[3] S.C. Wang, M.J. Starink. Int. Mater. Rev. 50, 4, 193 (2005).
[4] I.K. Razumov, Yu.N. Gornostyrev. Phys. Solid State 61, 12,

2493 (2019).
[5] I.K. Razumov, Yu.N. Gornostyrev. FMM. V pechati (2024).

(in Russian).
[6] M.D. Mulholland, D.N. Seidman. Acta Materialia 59, 5, 1881

(2011).
[7] P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Le-

vaillant. Acta Materialia 55, 14, 4877 (2007).

[8] Yu.N. Gornostyrev, M.I. Katsnelson. Phys. Chem. Chem. Phys.

17, 41, 27249 (2015).
[9] A. Shyam, S. Roy, D. Shin, J.D. Poplawsky, L.F. Allard,

Y. Yamamoto, J.R. Morris, B. Mazumder, J.C. Idrobo,

A. Rodriguez, T.R. Watkins, J.A. Haynes. Mater Sci. Eng. A

765, 138279 (2019).
[10] M.V. Petrik, Yu.N. Gornostyrev, P.A. Korzhavyi. Scripta

Materialia 202, 114006 (2021).
[11] M. Perez, F. Perrard, V. Massardier, X. Kleber, A. Deschamps,

H. de Monestrol, P. Pareige, G. Covarel. Phil. Mag. 85, 20,

2197 (2005).
[12] M.E. Fine, J.Z. Liu, M.D. Asta. Mater. Sci. Eng. A 463, 1−2,

271 (2007).
[13] I.K. Razumov, I.G. Shmakov. Phys. Solid State 61, 6, 952

(2019).
[14] I.N. Kar’kin, L.E. Kar’k-na, Yu.N. Gornostyrev, A.P. Ko-

rzhavyi. Phys. Solid State 61, 4, 601 (2019).
[15] E. Clouet, L. Lae, T. Epicier, W. Lefebvre, M. Nastar, A. De-

schamps. Nature Mater. 5, 6, 482 (2006).
[16] A.Yu. Stroev, O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Kor-

zhavyi. Comp. Mater. Sci. 218, 111912 (2023).
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