Electronic band structure and thermoelectric properties of CH3NH3PbI3, CsSnI3 and CH3NH3SnI3: ab initio approach
Zhukov V. P. 1, Сhulkov E. V.2
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
2HSE University, Мoscow, Russia
Email: zhukov_vladlen@mail.ru, evguenivladimirovich.tchoulkov@ehu.eus

PDF
Theoretical modeling "from the first principles" of the electronic band structure and thermoelectric properties of iodides CH3NH3PbI3, CsSnI3 and CH3NH3SnI3 has been performed. The simulation method is based on the electron density functional theory, the theory of electron-phonon interaction, the Boltzmann-Onsager theory of thermoelectric properties, and the Slack method for calculating phonon thermal conductivity. For a wide range of carrier concentration, the temperature dependences of conductivity, Seebeck coefficient, thermal conductivity coefficient, power function, and thermoelectric figure of merit are calculated. The calculated values of the figure of merit indicate the possibility of obtaining thermoelectrics with higher efficiency based on such compounds. It is shown that the most promising for use as a thermoelectric material is the CsSnI3 compound. Keywords: electronic band structure, PAW method, theory of Boltzmann, transport properties, Pb and Sn halides, methilammonium ion.
  1. M.A. Green, A. Ho-Baillie, H.J. Snaith. Nature Photonics 8, 7, 506 (2014)
  2. H. Li, F. Li, Zh. Shen, S.-T. Han, J. Chen, Ch. Dong, Ch. Chen, Y. Zhou, M. Wang. Nano Today 37, 101062 (2021)
  3. M. Dawson, C. Ribeiro, M.R. Morelli. Mater. Res. 25, 7, e20210441 (2022)
  4. Sb. tez. dokl. I Mosk. osenney mezhdunar. konf. po perovskitnoy fotovoltaike (MAPPIC 2019). KDU, Dobrosvet, M., (2019), 51 s. (in Russian)
  5. A.K. Baranwal, A. Kumar, Sh. Hayase. Nanomater. 12, 22, 4055 (2022)
  6. A. Filippetti, C. Caddeo, P. Delugas, A. Mattoni. J. Phys. Chem. C 120, 50, 28472 (2016)
  7. S. Choudhary, A. Shukla, J. Chaudhary, A.S. Verma. Int. J. Energy. Res. 44, 14, 11614 (2020)
  8. S. Saini, A.K. Baranwal, T. Yabuki, S. Hayase, K. Miyazaki. J. Electron. Mater. 49, 5, 2890 (2020)
  9. Q. Wang, Y. Tang, Z. Horita, S. Iikubo. Mater. Res. Lett. 10, 8, 521 (2022)
  10. I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman. Eur. Phys. J. B 91, 9, 263 (2018)
  11. A.M.M.T. Karim, M.K.R. Khan, M.S. Hossain. ACS Omega 6, 26, 16775 (2021)
  12. A. Kore, H. Murari, P. Singh. J. Phys. D 54, 30, 305503 (2021)
  13. A. Shukla, V.K. Sharma, S.K. Gupta, A.S. Verma. Mater. Res. Express 6, 12, 126323 (2020)
  14. P. Wu, Y. Xiong, L. Sun, G. Xie, L. Xu. Organic Electron. 55, 90 (2018)
  15. H. Xie, S. Hao, J. Bao, T.J. Slade, G.J. Snyder, C. Wolverton, M.G. Kanatzidis. J. Am. Chem. Soc. 142, 20, 9553 (2020)
  16. T. Ye, X. Wang, X. Li, A.Q. Yan, S. Ramakrishna, J. Xu. J. Mater. Chem. C 5, 5, 1255 (2017)
  17. L. Yu, W. Kassem, R. Bude, L. Divay, J. Amrit, S. Volz. 21st Int. Workshop on Thermal Investigations of ICs and Systems (THERMINIC) B, 1 (2015)
  18. E. Menendez-Proupin, P. Palacios, P. Wahnon, J.C. Conesa. Phys. Rev. B 90, 4, 045207 (2014)
  19. P. Umari, E. Mosconi, F. De Angelis. Sci. Rep. 4, 1, 4467 (2013)
  20. G.K.H. Madsen, D.J. Singh. Comp.Phys. Commun. 175, 1, 67 (2006)
  21. S. Saini, I. Matsumoto, S. Kishishita, A.K. Baranwal, T. Yabuki, S. Hayase, K. Miyazaki. Jpn J. Appl. Phys. 61, SE1019 (2022)
  22. Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura. Dalton Trans. 40, 20, 5563 (2011)
  23. X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Ja cimovic, B. Nafradi, M. Spina, D. Pavuna, L. Forro, E. Horvath. J. Phys. Chem. C 119, 21, 11506 (2015)
  24. S. Yu, F. Qian, M. Hu, Z. Ge, J. Feng, X. Chong. Mater. Lett. 308, Part A, 131127 (2022)
  25. T. Das, G. Di Liberto, G. Pacchioni. J. Phys. Chem. C 126, 4, 2184 (2022)
  26. Z.-Q. Ma, H. Pan, P.K. Wong. J. Electron. Mater. 45, 11, 5956 (2016)
  27. T. Shi, H. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H.-L. Yip, Y.-J. Zhao. J. Mater. Chem. A 5, 29, 15124 (2017)
  28. Y.S. Wudil, Q. Peng, A.Q. Alsayoud, M.A. Gondal. Comput. Mater. Sci. 201, 110917 (2022)
  29. A.M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K.A. Persson, A. Jain. Nature Commun. 12, 1, 2222 (2021)
  30. M. Zhang, K. Chen, Y. Wei, W. Hu, Z. Cai, J. Zhu, Q. Ye, F. Ye, Z. Fang, L. Yang, Q. Liang. Crystals 13, 3, 410 (2023)
  31. B.A. Rosales, L. Wei, J. Vela. J. Solid State Chem. 271, 206 (2019)
  32. G. Kresse, M. Marsman, J. Furthmuller. Vienna ab initio simulation package. VASP the guide. UniversitatWien, Wien (2018). 233 p
  33. C. Jacoboni. Theory of Electron Transport in Semiconductors. Springer, Berlin (2010). 588 p
  34. A. Cantarero, X. Alvarez. In: Nanoscale Thermoelectrics / Eds X. Wang, Zh.M. Wang. Springer, Berlin (2014). P. 141
  35. S. Ponce, E.M. Margine, C. Verdi, F. Giustino. arXiv:1604.0325[cond-mat.mtrl-sci]
  36. J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, M. Bernardi. Comp. Phys. Commun. 264, 107970 (2021)
  37. B.A. Auld. Acoustic Fields and Waves in Solids. Wiley Intersci. Pub., N.Y. (1973). 411 p
  38. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys.Rev. Lett. 100, 13, 136406 (2008)
  39. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White. J. Mater. Chem. A 1, 18, 5628 (2013)
  40. T.M. Tritt. Thermal Conductivity. Theory, Properties and Applications. Kluver Academic, N.Y. (2004). 290 p
  41. G.A. Slack, S. Galginaitis. Phys. Rev. 133, 1A, A253 (1964)
  42. G.A. Slack. J. Phys. Chem. Solids 34, 2, 321 (1973)
  43. G. Slack. Solid State Phys. 34, 1 (1979)
  44. D. Morelli, G.A. Slack. In: High Thermal Conductivity Materials / Eds S.L. Shinde, J.S. Goela. Springer, Berlin (2006). P. 37
  45. T. Jia, G. Chen, Y. Zhang. Phys. Rev. B 95, 15, 155206 (2017)
  46. C.L. Julian. Phys. Rev. 137, 1A, A128 (1965)
  47. O.L. Anderson. J. Phys. Chem. Solids 24, 7, 909 (1963)
  48. D. Connetable, O. Thomas. Phys. Rev. B 79, 9, 094101 (2009)
  49. A.M.A. Leguy, J.M. Frost, A.P. McMahon, V. Garcia Sakai, W. Kockelmann, C. Law, X. Li, F. Foglia, A. Walsh, B.C. O'Regan, J. Nelson, J.T. Cabral, P.R.F. Barnes. Nature Commun. 6, 1, 7124 (2015)
  50. J. Wei, L. Yang, Zh. Ma, P. Song, M. Zhang, J. Ma, F. Yang, X. Wang. J. Mater. Sci. 55, 27, 12642 (2020)
  51. X.-L. Shi, X. Tao, J. Zou, Zh.-G. Chen. Adv. Sci. 7, 7, 1902923 (2020)
  52. V.P. Zhukov, E.V. Chulkov, FTT 64, 12, 1891 (2022). (in Russian)
  53. J.-H. Pohls, Z. Luo, U. Aydemir, J.-P. Sun, S. Hao, J. He, I.G. Hill, G. Hautier, A. Jain, X. Zeng, C. Wolverton, G.J. Snyder, H. Zhu, M.A. White. J. Mater. Chem. A 6, 40, 19502 (2018)
  54. D. Ginting, C.-C. Lin, J.-S. Rhyee. Energies 13, 1, 72 (2019)
  55. S.Q. Bai, X.Y. Huang, L.D. Chen, W. Zhang, X.Y. Zhao, Y.F. Zhou. Appl. Phys. A 100, 4, 1109 (2010)
  56. A. Togo, L. Chaput, I. Tanaka. Phys. Rev. B 91, 9, 094306 (2015)
  57. C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito. Nature Commun. 6, 1, 7026 (2015)
  58. Q. Wang, Y. Tang, Z. Horita, S. Iikubo. Mater. Res. Lett. 10, 8, 521 (2022)
  59. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, F. Zhang, Z. Ao, Z. Nie. Chem. Mater. 31, 20, 8515 (2019)
  60. G.P. Nagabhushana, R. Shivaramaiah, A. Navrotsky. Proc. Nat. Acad. Sci. 113, 28, 7719 (2016).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru