Influence of the Guinier-Preston zones on the instability of high strain rate plastic deformation of aged alloys
Malashenko V. V.1,2
1Donetsk Institute of Physics and Technology named after. A.A. Galkina, Donetsk, Russia
2Donetsk State University, Donetsk, Russia
Email: malashenko@fti.dn.ua

PDF
The movement of an ensemble of edge dislocations under high strain rate deformation (high strain rate deformation) of an aged binary alloy with a high concentration of Guinier-Preston zones is theoretically investigated. The dependence of the dynamic yield strength of an aged alloy on the rate of plastic deformation is analyzed. The boundaries of the dynamic instability region of high strain rate deformation are determined. It is shown that an increase in the concentration of the Guinier-Preston zones leads to an increase in the area of deformation instability. Keywords: dislocations, defects, high strain rate deformation, dynamic yield strength, Guinier-Preston zones.
  1. G.F. Sarafanov. FTT 43, 1041 (2001). (in Russian)
  2. A.H. Kottrell. Dislokatsii i plasticheskoe techenie v kristallakh. Metallurgizdat, M. (1958). 768 s. (in Russian)
  3. G.A. Malygin, S.L. Ogarkov, A.V. Andriyash. FTT 56, 1123 (2014). (in Russian)
  4. V.S. Krasnikov, A.Yu. Kuksin, A.E. Mayer, A.V. Yanilkin. FTT 52, 1295 (2010). (in Russian)
  5. G.I. Kanel, V.E. Fortov, S.V. Razorenov. UFN, 177, 809 (2007). (in Russian)
  6. G.A. Malygin. FTT 57, 75 (2015). (in Russian)
  7. D. Tramontina, E. Bringa, P. Erhart, J. Hawreliak, T. Germann, R. Ravelo, A. Higginbotham, M. Suggit, J. Wark, N. Park, A. Stukowski, Y. Tang. High Energy Density Phys. 10, 9 (2014)
  8. M.A. Meyers, H. Jarmakani, E.M. Bringa, B.A. Remington. Dislocation in Solids. V. 15 / Ed. J.P. Hirth, L. Kubin, B.V. Elsevier. (2009). Ch. 89. P. 96
  9. I.N. Borodin, A.E. Mayer. ZhTF 83, 76 (2013). (in Russian)
  10. A.Yu. Kuksin, V.V. Stegailov, A.V. Yanilkin. DAN 420 467 (2008). (in Russian)
  11. A.S. Savinykh, G.I. Kanel, G.V. Garkushin, S.V. Razorenov. J. Appl. Phys. 128, 025902 (2020)
  12. D. Batani. Europhys. Lett. 114, 65001(1-7) (2016)
  13. S.A. Atroshenko, A.Yu. Grigoriev, G.G. Savenkov. FTT 61, 1738 (2019). (in Russian)
  14. V.V. Malashenko. FTT 49, 78 (2007). (in Russian)
  15. V.V. Malashenko. FTT 57, 2388 (2015). (in Russian)
  16. G.A. Malygin. ZhTF 91, 643 (2021). (in Russian)
  17. G.A. Malygin. UFN 169, 979 (1999). (in Russian)
  18. G.A. Malygin. Physics of the Solid State 37, 3 (1995)
  19. G.A. Malygin, B.I. Levandovsky, R.B. Timashev, V.M. Krymov, V.I. Nikolaev. Pis'ma v ZhTF, 46, 3 (2020). (in Russian)
  20. G.A. Malygin, V.I. Nikolaev, V.M. Krymov, A.V. Soldatov. Pis'ma v ZhTF 46, 7 (2020). (in Russian)
  21. V.V. Malashenko. Pis'ma v ZhTF 46, 39 (2020). (in Russian)
  22. V.N. Varyukhin, V.V. Malashenko. Izv. RAN. Ser. Fiz. 82, 9, 37 (2018). (in Russian)
  23. V.V. Malashenko. Physica B: Phys. Condens. Matter 404, 3890 (2009)
  24. V.V. Malashenko, T.I. Malashenko. FTVD, 4, 75 (2022). (in Russian)
  25. V.V. Malashenko. FTT 63, 1391 (2021). (in Russian)
  26. V.V. Malashenko. FTT 64, 1012 (2022). (in Russian)
  27. W. Verestek, A.-P. Prskalo, M. Hummel, P. Binkele, S. Schmauder. Phys. Mesomech. 20, 291 (2017)
  28. A.Yu. Stroev, O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi. Phys. Rev. Mater. 2, 033603 (2018)
  29. A.Yu. Kuksin, A.V. Yanilkin. MTT 1, 54 (2015). (in Russian)
  30. A.V. Yanilkin., V.S. Krasnikov, A.Yu. Kuksin, A.E. Mayer. Int. J. Plasticity 55, 94 (2014)
  31. V.V. Malashenko. Pis'ma v ZhTF 46, 39 (2020). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru