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Influence of the Guinier−Preston zones on the instability of high strain

rate plastic deformation of aged alloys
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The movement of an ensemble of edge dislocations under high strain rate deformation (high strain rate

deformation) of an aged binary alloy with a high concentration of Guinier–Preston zones is theoretically investigated.

The dependence of the dynamic yield strength of an aged alloy on the rate of plastic deformation is analyzed. The

boundaries of the dynamic instability region of high strain rate deformation are determined. It is shown that an

increase in the concentration of the Guinier–Preston zones leads to an increase in the area of deformation instability.

Keywords: dislocations, defects, high strain rate deformation, dynamic yield strength, Guinier–Preston zones.

DOI: 10.61011/PSS.2023.10.57225.131

One of the reasons of the plastic deformation instability

is the abnormal nature of dislocation drag (negative drag):
an increase in the speed of dislocation movement results

in decrease in dislocation drag [1,2]. Negative friction has

its own features in the area of high strain rate deformation

that occurs under conditions of high-energy external effects.

It occurs when using the method of dynamic channel-

angular pressing, when shock-wave action is applied to

metals, when crystals are exposed to high-power laser

pulses, when high-speed treatment is used, when explosion

is used for welding and treatment of metals [3–13]. In

this case, dislocations perform over-barrier slip and move

at speeds from tens to thousands of meters per second,

and the strain rate reaches 105−109 s−1. The features of

dynamic instability in this speed range are determined by

the effects of dynamic interaction of structural defects. In

the paper [14] the instability of over-barrier slip of the

single dislocation in crystals with high concentration of point

defects was studied, in the paper [15] the instability of the

motion of a dislocation ensemble under conditions of high

strain rate deformation was studied. In these papers, the

deformation of crystals that do not contain Guinier–Preston
zones was analyzed. The purpose of this paper is to analyze

the influence of these zones on the instability of high strain

rate plastic deformation of aged alloys.

The evolution of the dislocation ensemble in a de-

formable solid can be described by a system of kinetic

equations [16–20]. These equations allowed us to obtain

excellent agreement with numerous experimental data in

the field of quasi-static deformation. To analyze high strain

rate deformation of aged alloys, we will use the theory

of dynamic interaction of structural defects (DID) [21–26].
It is less universal than the system of equations [16–20],

but adequately describes the mechanism of dissipation

during over-barrier motion of dislocations and the dynamic

interaction of structural defects under high-energy external

effects. This allows a qualitative analysis of a number of

important cases of high strain rate deformation.

Let us consider the infinite edge dislocations that under

the action of a constant external stress σ0 move in planes

parallel to XOZ with a constant speed v in a crystal

containing atoms of the second component and Guinier–
Preston zones. These zones are formed at the first stage of

alloys aging and have a significant effect on their mechanical

properties [27–30]. The dislocation lines are parallel to the

axis OZ axis. Position of k-th dislocation is determined by

function

Wk(z , t) = vt + wk(z , t). (1)

Here wk(z , t) is a random variable describing transverse

dislocation oscillations that occur when it interacts with

chaotically distributed structural defects. The average value

of this value over the dislocation length and over the chaotic

distribution of defects is zero. The dislocation slip is

described by the following equation

m

{

∂2Wk

∂t2
− c2 ∂

2Wk

∂z 2

}

=b
[

σ0+σ p
xy +σ dis

xy +σ G
xy

]

−B
∂Wk

∂t
.

(2)
Here m is the mass of the dislocation length unit, B is the

damping constant due to phonon, magnon, electronic or

other dissipation mechanisms characterized by a linear de-

pendence of the dislocation drag force on its sliding speed, c
is the propagation velocity of transverse sound waves in the

crystal, σ
p

xy , σ
dis
xy , σ G

xy — components of the stress tensor

generated on the line of the k-dislocation, respectively,
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by point defects (atoms of the second component), other
dislocations and Guinier–Preston zones.

Guinier–Preston zone planes are parallel to the dislocation

sliding planes, and their centers are randomly distributed in

the crystal. We assume that all zones have a radius R, the
same thickness equal to the diameter of the atom of the sec-

ond component, the same Burgers vectors b0 = (0,−b0, 0)
that are parallel to axis OY .
The mechanism of dissipation during over-barrier slip

of the dislocation in the elastic field of structural defects

consists in the irreversible transition of the energy of

external effects into the energy of transverse oscillations

of the dislocation in the slip plane, and therefore is very

sensitive to the type of spectrum of dislocation oscillation,

primarily to the gap presence in it [21–26]. The dislocation

oscillation spectrum containing the gap has the form

ω(qz ) =
√

c2q2
z + 12 (3)

Let us consider the case when the spectral gap is created by

the collective interaction of atoms of the second component

with a dislocation. The size of such a gap is determined by

the expression [21]:

1 = 1d =
c
b

(ndχ
2)1/4. (4)

Here nd is dimensionless concentration of atoms of the

second component, χ is parameter of their misfit parameter.

The second component atoms make main contribution to

the spectral gap formation when the condition is met

nd >

(

ρb2

χ

)2

. (5)

Let us make a numerical estimation. For values χ = 10−1,

b = 3 · 10−19 m, ρ = 1015 m−2 this condition is met at

concentration nd = 10−4 and over.

The dynamic yield strength of the alloy is determined

as the sum of the contributions of the force of dynamic

dislocation drag by Guinier–Preston zones τG, atoms of the

second component τd , phonon drag τ f and dislocation drag

determined by the Taylor relation

τT = αµb
√
ρ = T, (6)

where µ is shear modulus, ρ is dislocation density, α —
dimensionless coefficient equal to about unity.

Using the results of the DID theory, we write the

expression for the contribution of the Guinier–Preston zones

to the dynamic yield strength in the form

τG =
K

1 + ε̇/ε̇G
, K =

µnGb2
0R

4
√

ndχ2
, ε̇G = ρRc 4

√

ndχ2. (7)

The contribution of the atoms of the second component has

the following form

τd = γ
ε̇

1 + (ε̇/ε̇d)2
, Bd =

µb
c

√

ndχ2, (8)
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Dynamic yield strength of aged alloy vs. strain rate at different con-

centrations of Guinier–Preston zones (nG1 > nG2 > nG3 > nG4).

γ =
Bd

ρb2
=

µ
√

ndχ2

ρbc
. (9)

Here Bd is constant of dynamic dislocation drag by atoms

of the second component.

Phonon dislocation drag makes the following contribution

to the dynamic yield stress

τ f = f ε̇, f =
B
ρb2

. (10)

Consequently, the dynamic yield strength of aged alloy

versus the rate of plastic deformation is determined by the

expression

τ = γ
ε̇

1 + (ε̇/ε̇d)2
+

K
1 + ε̇/ε̇G

+ f ε̇ + T. (11)

In the paper [25] it was shown that the dynamic yield

strength of aged alloy versus rate, when special conditions

are met, can have two minima and two maxima. In this

paper, these conditions meeting is not required; the main

contribution to the spectral gap formation is made by the

collective interaction of atoms of the second component

with the dislocation, and extremely high concentration

values of the Guinier–Preston zones nG = 1023−1024 m−3

are considered. Under these conditions, the yield strength of

the alloy versus rate is non-monotonic and has a maximum

and a minimum. The rate dependence graph is shown in

Figure.

The position of the maximum of rate dependence is

determined by the expression

ε̇max = ρRc 4
√

ndχ2
(

1 +
ndχ

2

nGbR2

)

. (12)

The minimum occurs at the rate value

ε̇min = ρb2R

√

µcnG

B

(

1 +
ndχ2

nGbR2

)

. (13)
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Let us make numerical estimations. For values

µ = 5 · 1010 Pa, c = 3 · 103 m/s, χ = 10−1,

b = 3 · 10−10 m, R = 3 · 10−9 m, ρ = 1012 m−2

nd = 10−4, B = 10−5 Pa · s, nG = 1024 m−3

we obtain

ε̇max = 105 s−1, ε̇min = 106 s−1.

From the obtained formulas it follows that in the region

of high strain rates and high concentrations of Guinier–
Preston zones the increase in the number of these zones

increases the instability of plastic deformation. Firstly, the

size of the region of abnormal dislocation drag increases, in

it the yield strength decreases with strain rate increasing. In

this case, the position of the maximum (the left boundary

of the instability region) shifts towards lower values with

zone concentration increasing, the position of the minimum

(the right boundary of this region) shifts towards higher

values. Secondly, an increase in the concentration of

Guinier–Preston zones leads to a sharper decrease in the

yield strength, which also increases the instability of plastic

deformation.

The results obtained can be used in analyzing the

mechanical behavior of aged alloys under conditions of high-

energy external effects.
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