Determining the parameters of the LiPON ionic system from the curves of diffusional relaxation of polarization
Rudy A. S.1, Lebedev M. E.1, Novozhilova A. V.1
1Demidov State University, Yaroslavl, Russia

The results of studying the ionic system parameters of the LiPON solid electrolyte by the voltage relaxation method on the polarized Ti|LiPON|Ti structure are presented. The measurements were carried out at temperatures of 223, 248, 273, and 300 K on a bench consisting of a thermostat, a charger, a charge-discharge switching device, and a recording circuit. The samples in the form of Ti|LiPON|Ti test structures charged to a voltage of 1 V were discharged through an external load with a nominal value of 1 MΩ, 100, 10, and 1 kΩ, and 10 Ω curves U(t) were recorded. A mathematical model of diffusion relaxation of polarization is developed, which approximates the discharge curves U(t). The method of fitting the parameters of the approximating dependence was used to determine the equilibrium concentration of lithium ions, the effective thickness of the electrical double layer, and the volume relaxation time of nonequilibrium ions. Keywords: solid electrolyte, ionic conductivity, polarization, through conduction current, electrical double layer, diffusion.
  1. X. Yu, J.B. Bates, G.E. Jellison Jr, F.X. Hart. J. Electrochem. Soc. 144, 2, 524 (1997).
  2. Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro. Front. Energy Res. 8, 218 (2020). articles/10.3389/fenrg.2020.00218/full
  3. P. Lopez-Aranguren, M. Reynaud, P. Gluchowski, A. Bustinza, M. Galceran, J.M. Lopez del Amo, M. Armand, M. Casas-Cabanas. ACS Energy Lett. 6, 2, 445 (2021)
  4. K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth. Solid State Ionics 233, 95 (2013).
  5. C.H. Choi, W.I. Cho, B.W. Cho, H.S. Kim, Y.S. Yoon, Y.S. Tak. Electrochem. Solid-State Lett. 5, 1, A14 (2020).
  6. F. Tan, X. Liang, F. Wei, J. Du. E3S Web. Conf. 53, 01008 (2018).
  7. F. Xu, N.J. Dudney, G.M. Veith, Y. Kim, C. Erdonmez, W. Lai, Y.-M. Chiang. J. Mater. Res. 25, 8, 1507 (2010).
  8. V.A. Zelenkov, M.E. Lebedev, A.S. Rudyi, A.B. Tchurilov. PTE 3, 142 (2023). (in Russian). view-article/?j=pribory\&y=2023\&v=0\&n=3\&a= Pribory2302031Zelenkov
  9. S. Saunders. Entropy 20, 8, 552 (2018).
  10. A.S. Rudyi, S.V. Vasil'ev, M.E. Lebedev, A.V. Metlitskaya, A.A. Mironenko, V.V. Naumov, A.V. Novozhilova, I.S. Fedorov, A.B. Churilov. Tech. Phys. Lett. 43, 6, 503 (2017).
  11. A.S. Rudyi, M.E. Lebedev, A.A. Mironenko, L.A. Mazaletsky, V.V. Naumov, A.V. Novozhilova, I.S. Fedorov, A.B. Tchurilov. Mikroelektronika, 49, 5, 366 (2020). (in Russian). DOI: 10.31857/S0544126920040092
  12. A. Rudy, A. Mironenko, V. Naumov, A. Novozhilova, A. Skundin, I. Fedorov. Batteries 7, 2, 21 (2021).
  13. O.L. Anderson, D.A. Stuart. J. Am. Ceram. Soc. 37, 12, 573 (1954). 10.1111/j.1151-2916.1954.tb13991.x
  14. H.L. Tuller, D.P. Button, D.R. Uhlmann. J. Non-Cryst. Solids 40, 1--3, 93 (1980). science/article/abs/pii/0022309380900964
  15. D. Ravaine, J.L. Souquet. Phys. Chem. Glasses 18, 2, 31 (1977). A_Thermodynamic_Approach_to_lonic_Conductivity_in _Oxide_Glasses_I
  16. M.D. Ingram, C.T. Moynihan, A.V. Lesikar. J. Non-Cryst. Solids 38--39, Part 1, 371 (1980). https://www.sciencedirect. com/science/article/abs/pii/0022309380904470
  17. D. Ravaine. J. Non-Cryst. Solids 38--39, Part 1, 353 (1980). 9380904445

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245