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The results of studying the ionic system parameters of the LiPON solid electrolyte by the voltage relaxation

method on the polarized Ti|LiPON|Ti structure are presented. The measurements were carried out at temperatures

of 223, 248, 273, and 300K on a bench consisting of a thermostat, a charger, a charge−discharge switching device,

and a recording circuit. The samples in the form of Ti|LiPON|Ti test structures charged to a voltage of 1V were

discharged through an external load with a nominal value of 1M�, 100, 10, and 1 k�, and 10� curves U(t)
were recorded. A mathematical model of diffusion relaxation of polarization is developed, which approximates

the discharge curves U(t). The method of fitting the parameters of the approximating dependence was used to

determine the equilibrium concentration of lithium ions, the effective thickness of the electrical double layer, and

the volume relaxation time of nonequilibrium ions.
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1. Introduction

Solid-state thin-film lithium-ion batteries (STLIB) form

a separate class of chemical current sources. A planar

structure and battery production technology based on

microelectronics processes serve as a basis for the inclusion

in a separate class. The thickness of STLIB functional

layers is from 2 to 0.2µm, therefore, the field strength

in the layers is at least two orders of magnitude higher

than in conventional batteries. As solid-state electrolyte,

most industrial STLIB use lithium phosphorus oxynitride

(LiPON) developed by the research team of Oak Ridge

National Laboratory [1]. LiPON has advantages over other

solid-state electrolytes such as processibility, relatively high

conductivity σ = 2 · 10−6 S · cm−1, low electron transfer-

ence number te < 10−8, wide operating temperature range

and large potential window ∼ 5V. More detailed analysis

of LiPON properties, in particular, in terms of strong and

weak electrolyte theory is provided in [2].
When manufacturing STLIB, a layer of the solid-state

LiPON electrolyte about a micrometer in thickness is

applied by vacuum magnetron sputtering of Li3PO4 in

nitrogen flow. Application procedures are selected such

that to ensure amorphous film structure, i.e. the re-

sistance of a nonstoichiometric crystalline film is much

higher. According to the LiPON application procedure,

the elemental composition of LixPOyNz film may be

varied in rather wide ranges 2.6 ≤ x ≤ 3.5, 1.9 ≤ y ≤ 3.8,

0.1 ≤ z ≤ 1.3 [3]. In traditional thick-film lithium-ion

batteries without severe process constraints, crystalline

LiPON with stoichiometric composition may be used [2,3].

Crystalline LiPON is produced by synthesis of precursors

with molar ratio 1 : 0.2 : 0.3 [4]. The final product as

a microcrystalline powder in the form of pressed tables

with a density of 78% at 80◦C has the conductivity

σ = 8.8 · 10−7 S · cm−1, which is sufficiently close to the

conductivity of amorphous LiPON [4].
Conductivity is the most important property of the solid-

state electrolyte. In the steady charge or discharge state,

continuous current flows via the electrolyte, therefore the

stationary conductivity of LiPON is of practical interest.

In the electrolyte, the ion current is limited by the

conductor, therefore charge transfer through the boundaries

is possible by means of chemical reactions only. Direct

measurements of stationary conductivity will be defined by

the reaction rates, rather than by the ion concentration

and mobility. Therefore, the conductivity is determined

using indirect measurements of alternating current like, for

example, in the electrochemical impedance spectroscopy

(EIS) method. In [1] and later in [5–7], LiPON conductivity

was determined exactly by the EIS method. As an additional

method, [1] used the cyclic voltammetry (CVA) method.

LiPON voltammogram is basically a current-voltage curve

of M|LiPON and LiPON|M contacts (where M is a

metal), on which displacement current vs. voltage is

overlaid. In this case it is rather difficult to distinguish

one current from another and to determine the LiPON

conductivity.

Theoretical justification and results of the determination

of ion conductor parameters using the conductor polar-

ization relaxation curves (discharge method) are provided

herein. This method is close to CVA, but has a significant
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Figure 1. Circuit diagram of a bench for recording charge curves in the test metal−electrolyte−metal structures through an external load.

difference. While according to the EIS and CVA methods

the system performs forced oscillations which differ only in

the exciting force variation pattern, according to the method

of interest the system relaxes towards the equilibrium state

under the action of only internal forces. The essence of

the method is in recording of voltage on the polarized test

M|LiPON|M structure, where M is the blocking electrode

metal. When electrodes M are closed through an external

load, diffusional relaxation of the LiPON polarization and

simultaneous drain of the charge inductively coupled with

LiPON from electrodes (discharge) take place. LiPON ionic

system parameters are defined as adjustable parameter of a

mathematical model approximating the discharge curves.

An original bench for recording discharge curves of the

test Ti|LiPON|Ti structure in the temperature range from

−50 to 90◦C and measurement procedure are described

below. The main discussion is focused on the mathematical

modelling (boundary value problem) of diffusional relax-

ation of LiPON polarization. Solution of the boundary value

problem gives an expression approximating the experimental

discharge curves U(t). The lithium ion equilibrium con-

centrations and appropriate LiPON conductivity obtained

by fitting are compared with the data from other sources.

Based on the temperature dependence of lithium ion

concentration and diffusion constant, it was concluded

that the solid-state LiPON electrolyte is classified as weal

electrolytes.

2. Experiment

Experimental samples with area 1× 1 cm2 and thick-

ness 1µm were made by magnetron sputtering of lithium or-

thophosphate in nitrogen atmosphere using SCR-651 Tetra

system and constituted a multilayer Si|SiO2|Ti|LiPON|Ti

structure, where the layers were listed from bottom to

top and where Si|SiO2 is the substrate with deposited

silicon oxide. The discharge curves were obtained using

a bench (Figure 1) consisting of a thermostat, charger,

”
charge−discharge“ switching system and Hantek 6104 BD

digital oscilloscope. The discharge curves were recorded

at 223, 248, 273 and 300K, each measurement consisted

of two stages. At the first stage, the sample was held at

the pre-defined temperature for 10min, and then charged

with 10µA up to 1V. At the second stage, the sample

was discharged through an external load. As a load,

1M�, 100, 10 and 1 k�, 100 and 10� resistors were

used. Charging−discharging modes were switched by

transistor switches whose response time was not higher

than 50 ns. The discharge curves were recorded using

a digital oscilloscope. The sample temperature was

maintained using a program-controlled solid-state miniature

Peltier element thermostat [8]. Examples of discharge

curves for 10 k� and 1M� load resistances are shown in

Figure 2.
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Figure 2. Discharge curves of the test Ti|LiPON|Ti structure through resistances a) 10 k� and b) 1M� at 223, 248, 273 and 300K.

3. Discharge model

3.1. LiPON polarization in electric field

When DC voltage U0 is applied to the test sample

electrodes, the same process take place in the solid-state

electrolyte as in the dielectric. In the external circuit,

decaying displacement current is set, which is caused by

almost all types of polarization, from which diffusion-

interlayer polarization makes the most significant contri-

bution. In the stationary state, the displacement current

fades out and only reach-through conductivity current or

leakage current is present. The reach-through conductivity

current will hereinafter mean the steady-state current or

limt→∞ I(t). Transient current will be referred to as the

”
leakage current“. The reach-through conductivity current

occurrence mechanism caused by the faradic process and

diffusion will be discussed below. It will be only noted

herein that this current includes two oppositely directed

flows — lithium ions and lithium atoms. Though this is

the same element, these particles are not identical, and their

isothermal mixing entropy (see, for example, [9]) is not

equal to zero. In terms of thermodynamics, the lithium ions

and atoms in LiPON form different thermodynamic systems

whose chemical potential gradients may be oppositely

directed and diffusion constants are different.

3.2. Statement and solution of the initial problem

To determine ion conductivity of the solid-state LiPON

electrolyte by the discharge curves, a mathematical model

of solid-state electrolyte polarization relaxation is required

and shall be constructed using the equivalent scheme.

It is sufficiently simple and consists of two capacitors,

that simulate the double electrical layer (DEL), connected
by Warburg diffused element W and LiPON resistance

(Figure 3). All structural elements shown in the diagram,

excluding the Warburg element, have lumped parameters

and are described by a conventional initial-value differential

equation (initial-value problem). The Warburg element has

distributed parameters and is described by a boundary-value

partial differential equation (boundary value problem). In an

CDEL1 CDEL2

UDEL1 UDEL2

REL

RL

W

Figure 3. equivalent scheme of the test Ti|LiPON|Ti structure
with external load. Here, W is the Warburg diffusion element,

REl is the electrolyte resistance, CDEL is the double electrical layer,

RL is the load resistance.

earlier model, this element was addressed as a system with

lumped parameters [10,11]; therefore, this model contained

fewer parameters and was less informative.

When voltage is applied to the test Ti|LiPON|Ti structure
shown in Figure 3, it quickly accumulates the charge on

the boundaries due to low thickness of the dense DEL

portion. At the same time, slow interlayer-diffusion charge

separation takes place within LiPON to compensate the

internal residual electric field. Thanks to the absence

of electronic charge transfer within the volume, the test

structure is able to stay in the polarized state for a long

time. When electrodes are closed through an external load,

depolarization current is induced in the circuit and the

electrode voltage decreases according to U(t), for the curves
see Figure 2. To get explicit U(t), the Cauchy problem of

electric field relaxation shall be cast and solved.

The electric field strength relaxation equation can be

solved by equating the displacement current ID flowing

through the internal circuit section to the current flowing

through the external load. The displacement current can be

expressed through the electric displacement vector variation
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Figure 4. Potential (solid line) and electric field strength (dashed
line) distribution in the test structure within the test model.

rate D = ε0E + P multiplied by the electrode area

ID ≡ SJD = −Sε0
d
dt

E(t) − S
d
dt

P(t). (1)

Here, sign
”
−“ before the derivatives is associated with

the fact that expression (1) is written in the projection on

current direction and the electric strength and polarization

moduli derivative is negative in this case. In polarized

state of LiPON, the electric field is concentrated mainly

inside DEL with thickness δ . The qualitative distribution

pattern of the electric field strength E(x) and potential ϕ(x)
in DEL within the electrolyte is shown in Figure 4. DEL is

further addressed as two endlessly thin charged planes with

a gap with thickness δ that remains constant at the specified

temperature. In the equivalent scheme (Figure 3), they are

represented by CDEL1 and CDEL2. It is also assumed that the

ion concentration varies during depolarization both in the

double electrical layer and within the electrolyte.

Displacement current (1) is equal to the current flowing

through the load resistance RL, which may be expressed in

terms of voltage on the test structure as I = U(t)/RL . The

voltage on the structure is equal to the sum of voltages on

the double electrical layer and within the electrolyte:

U(t) = UDEL1(t) + UDEL2(t) +

d−δ
∫

δ

E(x , t)dx .

According to [11], dielectric constant of LiPON εr is the

quantity of the order of 102, i. e. the last term is small

(Figure 4) and may be ignored. Since the capacity of the

two remaining DELs (air capacitors CDEL1 and CDEL2) shall
be equal to the test structure capacity, their thickness δ

is replaced by the effective thickness δeff. The effective

thickness is selected such that the capacity of the series

connection of air capacitors CDEL/2 = ε0S/(2δeff) would

be equal to the capacity of the test structure C = ε0εrS/d .
It follows from this condition that

εr = d/(2δeff), a U(t) = 2E(t)δeff.

Then, the external circuit current may be written as

I =
E(t)2δeff

RL

, (2)

where RL is the load resistance. Equation (1) and

relation (2) is reduced to a first-order non-homogeneous

linear equation

dE(t)
dt

+
E(t)
τ

= −
1

ε0

dP(t)
dt

, (3)

where τ = CRL is the time constant RC-chain,

and C = ε0S/(2δeff) is the capacity of two DELs connected

in series (Figure 3). The initial condition for equation (3) is

written as

E(0) =
U0

2δeff
. (4)

Equation (3) is calculated in a standard manner — by

the arbitrary-constant variation method. Its solution E(t) is

more convenient to write as voltage vs. time

U(t) = −
2δeff

ε0
P(t) +

2δeff

ε0τ
e−t/τ

∫

P(t)et/τ dt

+ 2δeffc0e−t/τ , (5)

where c0 is the integration constant, which is derived from

the initial condition (4) and will be explicitly written below.

According to (5), the following algorithm step shall be

expressing the polarization vector P(t) in terms of non-

equilibrium lithium ion concentration c(x , t).

3.3. polarization vector modulus calculation
on the assumption symmetrical
charge distribution

Further, it is assumed that the charge carrier system in

LiPON consists of two types of carriers: holes h− and

lithium ions Li+. Kinetics of these charge carriers is similar

to electron and hole kinetics in intrinsic semiconductors.

As in a semiconductor, only positive lithium ions have real

mobility in LiPON, and oxygen vacancies O− are covalently

bound with phosphorus atoms. Therefore, holes, whose

mobility is mediated by generation and recombination of

O− and Li+ pairs, rather than cation vacancies, are the

second-type carriers. Difference from semiconductors is

only in that holes are negatively charged, while activated

carriers are positively charged.

To find polarization vs. time, it is natural to assume that

lithium ions and holes are initially distributed symmetrically

relative to the central plane as shown in Figure 5. Then the

charge center defined by the radius vector

RC =

2N
∑

i=1

ri |qi |
/

2N
∑

i=1

|qi |,
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Figure 5. Calculation of polarization with symmetrical distribution of lithium ions and holes: a) symmetrical distribution of charges for

a arbitrary point of time; b) illustration to the dipole moment calculation scheme of layers with thickness dx .

remains in the same point on the central plane during

relaxation c(x , t) and ch−(x , t), because further charge

redistribution takes place under internal forces of the

closed system. In Figure 5, a, the double electrical

layer with thickness δ is light-grey. Charge concentration

in the elementary layer with thickness dx is dark-grey.

Distance between the layers is equal to d−2x — dipole

arm, whose moment is equal to dP = (d−2x)qc(x , t)dx .
To calculate the polarization vector modulus, a more

convenient scheme is used, see Figure 5, b. According

to this scheme, the layer charge dx is calculated as

q[c(x , t)−ch−(x , t)]dx , where c(x , t) = dNLi+/dx is the

concentration of non-equilibrium lithium ions in the vicinity

of point x , ch−(x , t) = dNh−/dx is the concentration of

holes in the same point. Owing to the charge distri-

bution symmetry, the hole concentration in point x is

equal to the lithium ion concentration in a symmetrical

point ch−(x , t) = c(d−x , t). This allows to calculate the

polarization vector modulus for any point of time as

P(t) = 2
q
d

d
∫

d/2

[c(x , t) − c(d − x , t)](x − d/2)dx , (6)

where x−d/2 is 1/2 of the dipole moment arm.

Expression (6) allows to find the electrolyte polarization

vector for any point of time, if the lithium ion concentra-

tion c(x , t) is known. To find the explicit dependence, it

is necessary to know the lithium ion distribution within the

volume c(x , t). Solution of the appropriate boundary value

problem is provided below.

3.4. Space charge diffusional relaxation model

To find the charge distribution function within the

electrolyte, boundary value problem of ion diffusion with

pre-defined initial distribution shall be solved. Therefore,

there is a problem of consideration of free (external) charge
field strength. The field of these charges is not included

in the test model. It is assumed that after voltage removal

free charges (charges on the opposite electrodes inductively

coupled with each other and not coupled with electrolyte

ions and holes), if any, are quickly drained through the

resistor. Thus, throughout the discharge process, the whole

field is concentrated within the double electrical layer and

within the electrolyte. Apparently, this is not the case for

discharge through a load with a higher rating. However,

this do not affect considerably the approximation quality,

because the type of discharge curve in this case is defined

by the last term in (5), for which the relaxation time τ can

be easily chosen. In this case, the relaxation time will be

a little overestimated and, therefore, the effective thickness

of DEL is underestimated. uncertainty of this parameter

does not influence the determination accuracy of lithium ion

concentration and mobility. With decreasing load resistance,

the influence of the last term in (5) decreases and, therefore,
the error of determination of the effective double electrical

layer thickness is reduced.

When ion generation and recombination processes take

place in the electrolyte, then the diffusion equation contains

so-called ion
”
sources“ G and

”
drains“ R. Ion generation

rate G is of activation nature and may be assumed

as a constant at the predefined temperature G. The

recombination rate depends on the ion concentration and

may be written as R = −C(x , t)/τV in the relaxation time

approximation, where C(x , t) is the ion concentration, τV is

the ion concentration relaxation time within the electrolyte.

Considering the foregoing, the diffusion equation is written

as
∂C
∂t

= D
∂2C
∂x2

−
C
τV

+ G, (7)

where D is the lithium diffusion constant, G is the ion

generation rate, and R is the ion trapping rate (for example,

lithium ions in cation vacancies) or, in other words, the

Physics of the Solid State, 2023, Vol. 65, No. 9
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charge carrier recombination rate. If the system is open, as

in this case, then the ion concentration may be written as

a sum of three components: C(x , t) = C0 + c̄(t) + c(x , t),
where C0 is the equilibrium ion concentration, c̄(t) is

the concentration of ions inducing the leakage current or

reach-through conductivity at t → ∞, and c(x , t) is the

equilibrium ion concentration.

Leakage and reach-through conductivity current ions

hereinafter mean those ions which participate in the faradic

process on the cathode. Since this process takes place only

at the boundary, the ion concentration depends only on

time, rather than on the space variable. The leakage current

ion concentration may be expressed from the leakage

current conductivity for which two relations may be written

σ̄ = µqc̄(t), σ̄ =
I lk(t)
E(t)S

, (8)

where E(t) is the filed strength inside the electrolyte.

From (8) and Einstein relation µ = Dq/(kBT ), it follows

that

c̄(t) =
I lk(t)kBT
Dq2E(t)S

. (9)

The leakage current, in turn, may be expressed in terms

of the faradic process rate in a layer with thickness rLi as

I lk(t) =
C(d, t)SrLiq

τF
, (10)

where rLi is the lithium ion radius. Substitution of

E(t) = U(t)/(2δeff) and (10) into (9) give the expression

for the leakage current ion concentration

c̄(t) =
kBTrLi2δeff
DqU(t)τF

. (11)

The
”
reach-through conductivity current“ is relevant

for stationary state only, because only then it can be

separated from the displacement current. In this case,

stationary state corresponds to the initial moment, there-

fore in (11) time shall be assumed as equal to zero.

The equilibrium lithium ion concentration C0 = C(d, 0)
may be estimated by expressing conductivity in terms

of mobility σ = µC0q, and mobility in terms of the

Einstein relation µ = Dq/(kBT ). For common con-

ductivity σ = 2.3 · 10−4 S/m [1] and diffusion constant

D = 1.5 · 10−15 m2/s [12], the equilibrium lithium ion

concentration C0 is 2.5 · 1028 m−3. For the test struc-

ture leakage current 5.8 · 10−7 A determined in [11] and

concentration relaxation time τF = 51.34 s (with discharge

after 1M�, i.e. in quasi stationary state), concentration C0,

according to equation (10), is equal to 2.0 · 1028 m−3. It

should be mentioned that this concentration corresponds to

the dense portion of the double electrical layer and may

exceed the concentration within the volume considerably.

Using C0 = 2.0 · 1028 m−3 and relation (11), reach-through
conductivity current ion concentration may be estimated as

c̄(0) = 9.8 · 1029δeff.

Substitution of C(x , t) = C0 + c̄(t) + c(x , t) into (7) al-

lows to write the equations for all three ion concentration

components

G −
C0

τV
= 0;

∂ c̄(x , t)
∂t

= 0;

∂c(x , t)
∂t

= D
∂2c(x , t)

∂x2
−

c(x , t)
τV

. (12)

The first equation gives the expression for the equilibrium

ion concentration C0 = GτV . The second equation means

that c̄(t) variation rate is equal to zero due to diffusion

processes. This is a correct result, because the reach-

through conductivity current is by default induced by the

electric field. Though the reverse branch of the reach-

through conductivity current is diffusional in nature, charge

is transferred by atoms that belong to other thermodynamic

system.

Thus, only the third equation remains unsolved and shall

be added with boundary conditions and initial condition.

In this case, these impermeability conditions are a particular

case of the Neumann condition. The initial condition assigns

such ion distribution c(x), when the sum of diffusion jdif
and drift jdr flows at t = 0 is equal to zero. The final

boundary value problem will be written as:

∂c(x , t)
∂t

= D
∂2c(x , t)

∂x2
−

c(x , t)
τV

, (13)

∂c(x , t)
∂x

∣

∣

∣

∣

x=0

= 0, (14)

∂c(x , t)
∂x

∣

∣

∣

∣

x=d

= 0, (15)

jdr + jdif = 0. (16)

To find the solution of problem (13)−(15), the

Fourier method is used, and solution is sought as

c(x , t) = V (x)e−µ2t , where space variable V (x) — is the

eigenfunction of the following operator:







































DV ′′(x) =
1− µ2τV

τV
V (x),

∂V (x)

∂x

∣

∣

∣

∣

x=0

= 0,

∂V (x)

∂x

∣

∣

∣

∣

x=d

= 0.

(17)

Solution of the eigenfunction problem for operator (17)
is provided in the

”
Appendix“. Eigenfunction may be

represented as a linear combination of basis functions

V (x) = a0 +
∞
∑

n=1

Cn cos

(

πn
x
d

)

. (18)

Undetermined coefficients Cn of the Fourier series (18)
are found from the initial condition of boundary value prob-

lem (16), which is stated from the following considerations.
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In the initial point of time, i.e. before the transistor switches

are switched to load, the system is in the equilibrium state.

This means that the local diffusion and drift currents are

equal and oppositely directed (16). Accurate calculation

of c(x , 0) requires consideration of the local field strength

and is associated with cumbersome calculations, therefore a

simplified approach is used here. Instead of a local value,

an average strength is used

1

d

d
∫

0

[E(x)/εr]dx = U0/(εrd).

Then, drift and diffusion currents may be written as

jdr = σU0/(εrd) and jdif = −qD[dc(x)/dx ], and condi-

tion (16) may be written as

σU0

εrd
− qD

dc(x , 0)
dx

= 0. (19)

Here, σ is the ion conductivity of LiPON, and εr is

the relative dielectric constant taking into account field

weakening by the double electrical layers with thickness

δeff. Integration (19) and integration constant determination

from condition
d

∫

0

c(x , t)dx = 0

gives the final form of the initial condition

c(x , 0) =
σU0

qεrD

[

1

π

(

π
x
d

)

−
1

2

]

. (20)

Function f (x) = πx/d in solution (20) can be addressed

as a piece continuous function with period [−d, d], which

allows to expand the boundary condition into the Fourier

series

c(x , 0) = −
σU0

qεrDπ

4

π

∞
∑

n=0

1

(2n + 1)2
cos

[

π(2n + 1)
x
d

]

.

(21)
Comparison of (21) with (18) allows to determine the

serial coefficients in solution (18):

a0 = 0, Cn = −
4σU0

qεrDπ2

1

(2n + 1)2
(22)

and to get the final form of the eigenfunction of opera-

tor (17) —

V (x) = −
4σU0

qεrDπ2

∞
∑

n=0

1

(2n + 1)2
cos

[

π(2n + 1)
x
d

]

. (23)

Since cosine is a bounded function, it follows from (23)
that the n-th component of the series tends to zero at

n → ∞, i. e. series (23) converges by the D’Alembert

criterion.

Components of series (23) damp exponentially with

damping decrement µ2
n , that may be expressed from

relation (A.2) provided in the Application

µ2
n =

1

τV
+

π2(2n + 1)2)

d2
D. (24)

Then the following expression will be the final solution

of boundary value problem (13)−(15)

c(x , t) = −C0

4qU0

εrkBTπ2

∞
∑

n=0

1

(2n + 1)2

× cos

[

π(2n + 1)
x
d

]

e−µ2
n t, (25)

where the conductivity and diffusion constant are replaced

by relations σ = µC0q and D = µkBT/q. Relaxation of

the initial ion distribution to the uniform equilibrium state

within model (25) is illustrated on curves in Figure 6.

3.5. Derivation of the approximating discharge
curve dependence U(t)

Solution (25) allows to calculate the concentration differ-

ence

c(x , t) − c(d−x , t) = −C0

8qU0

εrkBTπ2

∞
∑

n=0

1

(2n + 1)2

× cos

[

π(2n + 1)
x
d

]

e−µ2
n t (26)

in equation (6). Integration (6) gives the explicit depen-

dence of the polarization vector modulus on time

P(t) =
16dC0U0q2

π4εrkBT

∞
∑

n=0

1

(2n + 1)4
e−µ2

n t . (27)

Substitution (27) into equation (5) allows to determine

the integration constant

c0 = E(0) −
16dC0U0q2

π4ε0εrkBT

[ ∞
∑

n=0

1

(2n + 1)4
τ µ2

n

1− τ µ2
n

]

. (28)

To obtain the final expression form which approximates

voltage on the test sample during discharge, it only remains

to substitute (27) and (28) into (5):

U(t) = U0e−t/τ +
64C0δ

2
effU0q2

π4ε0kBT

×

∞
∑

n=0

[

1

(2n + 1)4
τ µ2

n

1− τ µ2
n
(e−µ2

n t − e−t/τ )

]

, (29)

where the relative dielectric constant is expressed in terms

of thicknesses εr = d/(2δeff).
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Figure 6. Lithium ion concentration distribution c(x, t) at C0 = 2 · 1025 m−3 and t = a) 0.1, b) 1.0, c) 5.0 and d) 7.0 s.

3.6. Approximation of experimental discharge
curves

Expression (29) approximates closely the experimental

discharge curves (Figure 2). Approximation accuracy is

illustrated by curves in Figure 7. The equilibrium lithium ion

concentration C0, effective thickness of the double electrical

layer δeff and non-equilibrium ion concentration relaxation

time τV were used as adjustable parameters.

4. Discussion of findings

According to the approximation, the equilibrium con-

centration C0 is the single parameter which apparently

depends on the temperature. The double electrical layer

thickness apparently does not depend on the temperature

and demonstrates statistical spread relative to the average

value δ̄eff = 1.14 · 10−10 m. This value is lower than the

covalent radius of the lithium atom rLi = 1.34 · 10−10 m,

which is allowable for the mathematical model parameter.

actually, for the air capacitor to have the same capacity

as the test structure with ion conductor, air gap shall

be very small. Relative dielectric constant determined as

εr = d/(2δ̄eff) is rather high εr = 4.39 · 103. The average

time of non-equilibrium ion concentration relaxation τV does

not vary with decreasing temperature and is equal to 0.61 s.

Equilibrium concentration C0 = 1.7 · 1027 m−3 at

T = 300K is by one order of magnitude lower than

2.0 · 1028 m−3 obtained according to the results in [11].
As mentioned above, this concentration corresponds
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Figure 7. Curves of the test structure discharge through resistance 10 k� at different temperatures. Solid line is an

experimental curve, dashed line is an approximating curve. Fixed parameters of approximating dependence (33) U0 = 1V;

D = 1.5 · 10−15 m2 · s−1 . adjustable parameters: a) T = 300K, C0 = 1.7 · 1027 m−3, δeff = 1.2 · 10−10 m, τV = 0.55 s; b) T = 273K,

C0 = 3.5 · 1027 m−3, δeff = 0.41 · 10−10 m, τV = 0.65 s; c) T = 248K, C0 = 8.1 · 1026 m−3, δeff = 0.68 · 10−10 m, τV = 0.55 s;

d) T = 223K, C0 = 6.6 · 1025 m−3, δeff = 2.3 · 10−10 m, τV = 0.70 s.

to the dense portion of the double electrical layer and

may exceed the concentration within the volume. As

for deviations from C0 = 2.5 · 1028 m−3 derived from

the conductivity obtained in [1], the causes of these

deviations are of fundamental nature. Actually, in [1],
LiPON resistance R was determined as a real component

of impedance corresponding to the minimum value of the

imaginary component. The fact that Im Ẑ 6= 0 means that,

in addition to the drift current,the diffusion current flows

in the electrolyte. Hence, R is not an ohmic resistance,

but drift and diffusion current resistance, and σ = µC0q
is not applicable in this case. It is easy to see that the

ohmic conductivity will be lower than σ = 2.3 · 10−4 S/m

obtained in [1] and the corresponding concentration will be

also lower.

On all curves in Figure 7, a minor discrepancy between

the asymptotics of the approximating and experimental

curves is observed. While the approximating dependence

tends to zero, the experimental curves tend to some

continuous voltage about 0.3−0.5V. This may be a sign

of the electret effect caused by the space charge with very

long relaxation time. relaxation mechanism of this type

of polarization is of non-diffusion nature; therefore it is

included in the offered model. It is most likely the space

charge localized on deep levels, which relaxes slowly due to

interlayer-drift charge transfer.

5. Conclusions

Despite some idealization of the ion system within

the mathematical model, expression (33) approximates

closely the experimental discharge curve. Therefore, it

may be assumed that the obtained adjustable parameter

values describe the LiPON diffusional relaxation processes

adequately. In addition to the parameters mentioned

above, expression (33) allows to determine the ion diffusion

constant. According to (27), this is possible, if the following

condition is satisfied

D ≥ d2/τVπ
2(2n + 1)2, (34)

where n = 1, 2. According to [12], for LiPON

D = 1.5 · 10−15 m2/s and condition (34) is satisfied only

beginning rom the 5th term of the sum in (33). Therefore,
the diffusion constant virtually has no effect on the type of

the discharge curve.

Currently, an issue is discussed in the literature regarding

the classification of glass-like electrolytes, including also

LiPON [2]: strong or weak electrolytes? Conductivity

of strong electrolytes is known to be defined by the ion

mobility σ = f [µ(T )], C0 6= f (T ) [13,14], and for weal

electrolytes, conductivity depends on ion concentration

σ = f [C0(T )], µ 6= f (T ) [15–17]. The approximation

mentioned above shows that the ion concentration is a

6 Physics of the Solid State, 2023, Vol. 65, No. 9
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function of temperature. In this case, the type of discharge

curves does not depend on the diffusion constant, but

is defined by the bulk relaxation time of non-equilibrium

ion concentration due to trapping on cation vacancies.

Therefore, the polarization relaxation rate does not depend

on the ion mobility as well, because the latter is associated

with the diffusion constant by the Einstein relation. Hence,

a conservative conclusion may be made that LiPON is a

weak electrolyte.

The offered model may be integrated into a more general

STLIB model. Charge transfer via the electrolyte during

the STLIB discharge is generally similar to the LiPON

depolarization. The main difference of the test Ti|LiPON|Ti
structure from STLIB is in that the battery electrodes are

permeable for lithium due to which their capacities are

much higher than those of the double electrical layers. The

oxidation-reduction reaction rate at the STLIB electrode

boundary is also higher. However, prevalence of diffusion

over the drift charge transfer in electrolyte is a feature in

common. Therefore, after the appropriate improvement,

the offered model may be applicable to the description of

STLIB polarization−depolarization which is the main factor

determining the battery discharge capacity.
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Appendix

Solution of problem (17) is sought in the form

V (x) = eλx — of the simplest function satisfying the

eigenfunction orthogonality requirement. Its substitution

into (17) gives the characteristic equation

λ2 =
1− µ2τV

DτV
. (5.1)

Roots of this equation may be both real and complex.

A single real root λ = 0 corresponds to the uniform

non-equilibrium state c(t) = c(0) exp(−t/τV ), which re-

laxes to the equilibrium state without space perturbations.

Therefore, only the case 1−µ2τV < 0, when roots of the

equation (A.1) are complex, is discussed below.

λ1 = iλ = i

√

|1− µ2τV |

τV D
;

λ2 = −iλ = −i

√

|1− µ2τV |

τV D
. (5.2)

Eigenfunction is a linear combination of particular so-

lutions V (x) = C1eiλx + C2e−iλx , from which boundary

condition (14):
∂c(x , t)

∂x

∣

∣

∣

∣

x=0

= 0 (5.3)

passes only solutions in the form of V (x) = 2C1 cos(λx). Its
substitution into boundary condition (15):

∂c(x , t)
∂x

∣

∣

∣

∣

x=d

= 0 (5.4)

gives the equation for operator eigenvalues

λ sin(λd) = 0. (5.5)

This equation has an endless number of roots λnd = ±πn,
n = 0, 1, 2, . . ., which give a set of eigenfunctions

Vn(x) = Cn cos(πnx/d), thus, forming the orthogonal and

full basis. Operator eigenfunctions (17) may be expressed in

the form of linear combination of basis functions, whereby

uniquely

V (x) = a0 +

∞
∑

n=1

Cn cos

(

πn
x
d

)

. (5.6)
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