Synthesis, structural and magnetic properties NaZnFe2(VO4)3
Drokina T. V.1, Molokeev M. S.1,2, Velikanov D. A.1, Bayukov O. A.1, Vorotynov A. M.1, Friedman A. L.1, Petrakovsky G. A.1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University, Krasnoyarsk, Russia
Email: tvd@iph.krasn.ru

PDF
A new magnetic compound NaZnFe2(VO4)3 obtained by solid-phase synthesis has been studied using X-ray diffraction, Mossbauer spectroscopy, electron paramagnetic resonance, measurement of the temperature dependence of the dielectric permeability, and magnetometry. The crystalline structure of NaZnFe2(VO4)3 is described by a triclinic spatial group of symmetry P1 with the parameters of an elementary crystalline chain: a=6.74318 (7) Angstrem, b= 8.1729 (1) Angstrem, c=9.8421 (1) Angstrem, α= 106.2611 (9)o, β=104.55 (1)o, γ= 102.337 (1)o, V=479.88 (1) Angstrem3, Z=2. Magnetic Fe3+ cations in the cell occupy six positions populated together with diamagnetic Zn2+ cations, which leads to states of magnetic inhomogeneity and local violation of charge neutrality. Data from resonance and magnetic studies of NaZnFe2(VO4)3 confirm the main role of high-spin Fe3+ iron cations in the formation of magnetism with competing exchange magnetic interactions and a high value of the frustration index. It is shown that the magnetic subsystem of a sample with a negative asymptotic Neel temperature undergoes a magnetic transition from the paramagnetic state to the magnetic state of the spin glass when the temperature decreases. Keywords: inorganic compounds, multicomponent vanadates, crystal structure, magnetic properties. DOI: 10.61011/PSS.2023.08.56572.134
  1. I.Ya. Korenblit, E.F. Shender. UFN 157, 267 (1989). (in Russian)
  2. V.S. Dotsenko. UFN 163, 1 (1993). (in Russian)
  3. J.A. Mydosh. Spin-Glasses: An Experimental Introduction, Taylor and Francis. N.Y. (1993). 256 p
  4. A. Arauzo, J. Bartolome, J. Luzon, T. Drokina, G.A. Petrakovskii, M.S. Molokeev. JMMM 515, 167273 (2020)
  5. A. Norlund Christensent, T. Johansson, B. Lebech. J. Phys. C 9, 2601 (1976)
  6. G. Petrakovsky, L. Bezmaternykh, I. Gudim, O. Bayukov, A. Vorotynov, A. Bovina, R. Shimchak, M. Baran, K. Ritter. FTT 48, 1795 (2006). (in Russian)
  7. T.V. Drokina, G.A. Petrakovsky, O.A. Bayukov, A.M. Vorotynov, D.A. Velikanov, M.S. Molokeev, FTT 58, 1913 (2016). (in Russian)
  8. A. Koshelev, L. Shvanskaya, O. Volkova, K. Zakharov, F. Theuss, C. Koo, R. Klingeller, S. Kamusella, H.-H. Klauss, S. Kundu, S. Bachhar, A.V. Mahajan, P. Khuntia, D. Khanam, B. Rahaman, T. Saha-Dasgupta, A.N. Vasiliev. J. Alloys Comp. 842, 155763 (2020)
  9. T.V. Drokina, D.A. Velikanov, O.A. Bayukov, M.S. Molokeev, G.A. Petrakovsky, FTT, 63, 754 (2021). (in Russian)
  10. D.A. Velikanov. Inorg. Mater. Appl. Res. 11, 801 (2020)
  11. F.D. Martin, H. Muller-Buschbaum. Z. Naturforschung B 50, 1, 51 (1995)
  12. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. --- User's Manual. Bruker AXS, Karlsruhe, Germany. (2008)
  13. K.P. Belov, M.A. Belyanchikova, R.Z. Levitin, S.A. Nikitin. Redkozemel'nye ferromagnetiki i antiferromagnetiki. Nauka, M., (1965). 420 p. (in Russian)
  14. J.E. Greedan, A.P. Ramirez. Comm. Condens. Mater. Phys. 18, I, 21 (1996)
  15. J.E. Greedan. J. Mater. Chem. 11, 37 (2000)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru