Dielectric-spectroscopic separation of characteristics of conduction mechanisms in AgI nanocrystalline films
Ilyinsky A. V.1, Kastro R. A.2, Kononov A. A.2, Pashkevich M. E.3, Shadrin E. B.1
1Ioffe Institute, St. Petersburg, Russia
2Herzen State Pedagogical University of Russia, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: shadr.solid@mail.ioffe.ru

PDF
The study of the frequency dependence of the components of the complex permittivity of thin (100 nm) nanocrystal silver iodide (AgI) films revealed the presence of two different types of relaxation processes, sharply differing in their relaxation times: tau1<<tau2. It is established that the small relaxation time of tau1 is the time of formation of a stable configuration of the internal electric field when the external high-frequency sinusoidal electric field is shielded by a system of free conduction electrons. On the contrary, a long relaxation time of tau2 characterizes the process of shielding a low-frequency external field by a system of quasi-free silver ions. It is shown that the temperature dependence of the numerical value of tau1(T) has a thermal hysteresis with a loop, the position of the heating and cooling branches of which coincides with the temperature region of the forward and reverse phase transitions in the AgI film: semiconductor-superionic and superionic-semi-conductor. The results of calculating the parameters of dielectric spectra in the framework of Debye theory are presented, demonstrating good agreement with the parameters of the proposed electrical circuit of the film sample calculated by the complex impedance method Keywords: dielectric measurements, superionics, silver iodide, semiconductor-superionic phase transition. DOI: 10.61011/PSS.2023.08.56571.109
  1. T.Yu. Vergent'ev, E.Yu. Koroleva, D.A. Kurdyukov, A.A. Naberezhnova, A.V. Filimonov. Phys. Solid State 55, 1, 175 (2013)
  2. Fizicheskaya entsiklopediya. Sov. entsiklopediya, M. 1, 700 (1988). (in Russian)
  3. Kittel. Introduction to solid state physics. John Wiley \& Sons, Inc. John Wiley \& Sons (2005). 680 p. ISBN 0-471-41526-X
  4. A.V. Ilinskiy, R.A. Kastro, M.E. Pashkevich, E.B. Shadrin. FTP 54, 4, 331 (2020). (in Russian)
  5. D.N. Zubarev. Fizicheskaya entsiklopediya / Ed. by A.M. Prokhorov. Bol'shaya ros. enciklopediya, M. (1992). Ch. 5. (in Russian)
  6. I.O. Popova, N.Y. Gunia. Izv. RGPU im. A.I. Gercena, 144, 51 (2012). (in Russian)
  7. E.S. Bochkareva, A.I. Sidorov, A.V. Nashchekin. ZhTF 7, 1067 (2018). (in Russian)
  8. E.B. Shadrin, A.V. Ilyinsky, A.I. Sidorov, S.D. Khanin. FTT 44, 11, 2269 (2010). (in Russian)
  9. A.I. Slutsker, V.L. Gilyarov, Yu.I. Polikarpov. ZhTF 78, 11, 60 (2008). (in Russian)
  10. G.I. Zebrev. Fizicheskiye osnovy kremniyevoy nanoelektroniki. BINOM. Laboratoriya znanij, M. (2011). 240 p. ISBN 978-5-9963-0181-2 (in Russian)
  11. B.I. Bednyi. Elektronnye lovushki na poverhnosti poluprovodnikov. Sorosov. obraz. zhurn. Fizika 7, 114 (1998). (in Russian)
  12. V.F. Gantmacher. Elektrony v neuporyadochennykh sredakh. FIZMATLIT, M. (2013). 288 p. (in Russian)
  13. R.V. Marija, S.V. Dragan, G.M. Vesna, J. Serb. Chem. Soc. 72, 8-9, 857 (2007)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru